Skip to main content

Adaptive Group Sequential Tests

  • Chapter
  • First Online:

Part of the book series: Springer Series in Pharmaceutical Statistics ((SSPS))

Abstract

If the prior experience with the study treatments is insufficient for a persistent pre-specification of relevant and realistic treatment effects, the effect and corresponding sample sizes may be reassessed at an interim analysis from unblinded interim data. In this case designs are required that guarantee Type I error rate control. Bauer (Biometrie und Informatik in Medizin und Biologie 20:130–148, 1989) and Bauer and Köhne (Biometrics 50:1029–1041, 1994), on the one hand, and Proschan and Hunsberger (Biometrics 51:1315–1324, 1995), on the other hand, have independently suggested designs that control Type I error rates after such data driven types of sample size adjustments. This chapter is devoted to adaptive designs as suggested by these pioneering papers as well as newer developments including the CRP principle due to Müller and Schäfer (Biometrics 57:886–891, 2001). We will focus in this chapter on two-stage adaptive designs with an adaptation of the sample size, although the method allows for other types of adaptations such as changing test statistics or changing hypotheses, as well as for the multi-stage generalization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bauer, P. (1989). Multistage testing with adaptive designs. Biometrie und Informatik in Medizin und Biologie, 20, 130–148.

    Google Scholar 

  • Bauer, P., & Köhne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics, 50, 1029–1041. (Correction in 1996 Biometrics, 52, 380).

    Google Scholar 

  • Bauer, P., & Röhmel, J. (1995). An adaptive method for establishing a dose-response relationship. Statistics in Medicine, 14, 1595–1607.

    Article  Google Scholar 

  • Birkett, M. A., & Day, S. J. (1994). Internal pilot studies for estimating sample size. Statistics in Medicine, 13, 2455–2463.

    Article  Google Scholar 

  • Brannath, W., & Bauer, P. (2004). Optimal conditional error functions for the control of conditional power. Biometrics, 60, 715–723.

    Article  MathSciNet  MATH  Google Scholar 

  • Brannath, W., Bauer, P., & Posch, M. (2006a). On the efficiency of adaptive designs for flexible interim decisions in clinical trials. Journal of Statistical Planning and Inference, 136, 1956–1961.

    Article  MathSciNet  MATH  Google Scholar 

  • Brannath, W., Gutjahr, G., & Bauer, P. (2012). Probabilistic foundation of confirmatory adaptive designs. Journal of the American Statistical Association, 107, 824–832.

    Article  MathSciNet  MATH  Google Scholar 

  • Brannath, W., König, F., & Bauer, P. (2007). Multiplicity and flexibility in clinical trials. Pharmaceutical Statistics, 6, 205–216.

    Article  Google Scholar 

  • Brannath, W., Posch, M., & Bauer, P. (2002). Recursive combination tests. Journal of the American Statistical Association, 97, 236–244.

    Article  MathSciNet  MATH  Google Scholar 

  • Bretz, F., König, F., Brannath, W., Glimm, E., & Posch, M. (2009a). Tutorial in biostatistics: Adaptive designs for confirmatory clinical trials. Statistics in Medicine, 28, 1181–1217.

    Article  MathSciNet  Google Scholar 

  • Burman, C. -F., & Sonesson, C. (2006). Are flexible designs sound? Biometrics, 62, 664–669.

    Article  MathSciNet  MATH  Google Scholar 

  • Case, L. D., Morgan, T. M., & Davis, C. E. (1987). Optimal restricted two-stage designs. Controlled Clinical Trials, 8, 146–156.

    Article  Google Scholar 

  • Cui, L., Hung, H. M. J., & Wang, S. -J. (1999). Modification of sample size in group sequential clinical trials. Biometrics, 55, 853–857.

    Article  MATH  Google Scholar 

  • Denne, J. S. (2001). Sample size recalculation using conditional power. Statistics in Medicine, 20, 2645–2660.

    Article  Google Scholar 

  • Emerson, S. S. (2006). Issues in the use of adaptive clinical trial designs. Statistics in Medicine, 25, 3270–3296; Discussion 3302–3304, 3320–3325, 3326–3347.

    Google Scholar 

  • Englert, S., & Kieser, M. (2012). Improving the flexibility and efficiency of phase II designs for oncology trials. Biometrics, 68, 886–892.

    Article  MathSciNet  MATH  Google Scholar 

  • Englert, S., & Kieser, M. (2015). Methods for proper handling of overrunning and underrunning in phase II designs for oncology trials. Statistics in Medicine, 34, 2128–2137.

    Article  MathSciNet  Google Scholar 

  • Fisher, R. A. (1932). Statistical methods for research workers (4th ed.). London: Oliver and Boyd.

    MATH  Google Scholar 

  • Friede, T., & Kieser, M. (2006). Sample size recalculation in internal pilot study designs: A review. Biometrical Journal, 48, 537–555.

    Article  MathSciNet  Google Scholar 

  • Gould, A. L. (1992). Interim analysis for monitoring clinical trials that do not materially affect the type I error rate. Statistics in Medicine, 11, 53–66.

    Google Scholar 

  • Gould, A. L. (1995). Planning and revising the sample size for a trial. Statistics in Medicine, 14, 1039–1051.

    Article  Google Scholar 

  • Graf, A. C., & Bauer, P. (2011). Maximum inflation of the type 1 error rate when sample size and allocation rate are adapted in a pre-planned interim look. Statistics in Medicine, 30, 1637–1647.

    Article  MathSciNet  Google Scholar 

  • Graf, A. C., Bauer, P., Glimm, E., & König, F. (2014). Maximum type 1 error rate inflation in multiarmed clinical trials with adaptive interim sample size modifications. Biometrical Journal, 56, 614–630.

    Article  MathSciNet  MATH  Google Scholar 

  • Gugerli, U. S., Maurer, W., & Mellein, B. (1993). Internally adaptive designs for parallel group trials. Drug Information Journal, 27, 721–732.

    Article  Google Scholar 

  • Gutjahr, G., Brannath, W., & Bauer, P. (2011). An approach to the conditional error rate principle with nuisance parameters. Biometrics, 67, 1039–1046.

    Article  MathSciNet  MATH  Google Scholar 

  • Hartung, J. (2001). A self-designing rule for clinical trials with arbitrary variables. Controlled Clinical Trials, 22, 111–116.

    Article  Google Scholar 

  • Hartung, J., & Knapp, G. (2003). A new class of completely self-designing clinical trials. Biometrical Journal, 45, 3–19.

    Article  MathSciNet  Google Scholar 

  • Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Academic: New York.

    MATH  Google Scholar 

  • Hommel, G. (2001). Adaptive modifications of hypotheses after an interim analysis. Biometrical Journal, 43, 581–589.

    Article  MathSciNet  MATH  Google Scholar 

  • Jennison, C., & Turnbull, B. W. (2003). Mid-course sample size modification in clinical trial. Statistics in Medicine, 22, 971–993.

    Article  Google Scholar 

  • Kieser, M., & Friede, T. (2000). Re-calculating the sample size in internal pilot study designs with control of the type I error rate. Statistics in Medicine, 19, 901–911.

    Article  Google Scholar 

  • König, F., Brannath, W., Bretz, F., & Posch, M. (2008). Adaptive Dunnett tests for treatment selection. Statistics in Medicine, 27, 1612–1625.

    Article  MathSciNet  Google Scholar 

  • Lehmacher, W., & Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials. Biometrics, 55, 1286–1290.

    Article  MATH  Google Scholar 

  • Liu, Q., Proschan, M. A., & Pledger, G. W. (2002). A unified theory of two-stage adaptive designs. Journal of the American Statistical Association, 97, 1034–1041.

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, H. -H., & Schäfer, H. (2001). Adaptive group sequential designs for clinical trials: Combining the advantages of adaptive and of classical group sequential approaches. Biometrics, 57, 886–891.

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, H. H., & Schäfer, H. (2004). A general statistical principle for changing a design any time during the course of a trial. Statistics in Medicine, 23, 2497–2508.

    Article  Google Scholar 

  • O’Brien, P. C., & Fleming, T. R. (1979). A multiple testing procedure for clinical trials. Biometrics, 35, 549–556.

    Article  Google Scholar 

  • Pampallona, S., & Tsiatis, A. A. (1994). Group sequential designs for one-sided and two-sided hypothesis testing with provision for early stopping in favor of the null hypothesis. Journal of Statistical Planning and Inference, 42, 19–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials. Biometrika, 64, 191–199.

    Article  Google Scholar 

  • Posch, M., & Bauer, P. (1999). Adaptive two stage designs and the conditional error function. Biometrical Journal, 41, 689–696.

    Article  MATH  Google Scholar 

  • Posch, M., Bauer, P., & Brannath, W. (2003). Issues in designing flexible trials. Statistics in Medicine, 22, 953–969.

    Article  Google Scholar 

  • Posch, M., Timmesfeld, N., König, F., & Müller, H. -H. (2004). Conditional rejection probabilities of Student’s t-test and design adaptation. Biometrical Journal, 46, 389–403.

    Article  MathSciNet  Google Scholar 

  • Proschan, M. A. (2003). The geometry of two-stage tests. Statistica Sinica, 13, 163–177.

    MathSciNet  MATH  Google Scholar 

  • Proschan, M. A., & Hunsberger, S. A. (1995). Designed extension of studies based on conditional power. Biometrics, 51, 1315–1324.

    Article  MATH  Google Scholar 

  • Sonnemann, E. (1991). Kombination unabhängiger Tests. In J. Vollmar (Ed.), Biometrie in der chemisch–pharmazeutischen Industrie, 4, 91–112.

    Google Scholar 

  • Timmesfeld, N., Schäfer, H., & Müller, H. -H. (2007). Increasing the sample size during clinical trials with t-distributed test statistics without inflating the Type I error rate. Statistics in Medicine, 26, 2449–2464.

    Article  MathSciNet  Google Scholar 

  • Tsiatis, A. A., & Mehta, C. R. (2003). On the inefficiency of the adaptive design for monitoring clinical trials. Biometrika, 90, 367–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica, 16, 933–951.

    MathSciNet  MATH  Google Scholar 

  • Wassmer, G. (1998). A comparison of two methods for adaptive interim analyses in clinical trials. Biometrics, 54, 696–705.

    Article  MATH  Google Scholar 

  • Wassmer, G. (1999b). Multistage adaptive test procedures based on Fisher’s product criterion. Biometrical Journal, 41, 279–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Wassmer, G. (1999c). Statistische Testverfahren für gruppensequentielle und adaptive Pläne in klinischen Studien. Theoretische Konzepte und deren praktische Umsetzung mit SAS. Köln: Verlag Alexander Mönch.

    Google Scholar 

  • Wittes, J., & Brittain, E. (1990). The role of internal pilot studies in increasing the efficiency of clinical trials. Statistics in Medicine, 9, 65–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wassmer, G., Brannath, W. (2016). Adaptive Group Sequential Tests. In: Group Sequential and Confirmatory Adaptive Designs in Clinical Trials. Springer Series in Pharmaceutical Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-32562-0_6

Download citation

Publish with us

Policies and ethics