Skip to main content

Part of the book series: Springer Series in Pharmaceutical Statistics ((SSPS))

  • 2438 Accesses

Abstract

In this chapter, we present group sequential test procedures that are specifically designed for unequally sized stages. We first describe the effect of using the decision boundaries designed for equally sized stages to the more general case of unequally sized stages. We also briefly describe a worst case scenario adjustment procedure. We then sketch the use of designs with prefixed sample sizes that need not to be equal to each other. A more general approach is provided by the use of the α-spending function or use function approach. This more sophisticated approach can handle unpredictable sample sizes per stage and we will see that even the maximum number of stages, K, need not be fixed in advance when using this approach. The extension to the β-spending function approach is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, K. M., & Clark, J. B. (2010). Fitting spending functions. Statistics in Medicine, 29, 321–327.

    MathSciNet  Google Scholar 

  • Bauer, P. (1992). The choice of sequential boundaries based on the concept of power spending. Biometrie und Informatik in Medizin und Biologie, 23, 3–15.

    Google Scholar 

  • Brittain, E. H., & Bailey, K. R. (1993). Optimization of multistage testing times and critical values in clinical trials. Biometrics, 49, 763–772.

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, M. N., Hwang, I. K., & Shih, W. J. (1998). Group sequential designs using both type I and type II error probability spending functions. Communications in Statistics - Theory and Methods, 27, 1323–1339.

    Article  MATH  Google Scholar 

  • Cook, R. J. (1996). Coupled error spending functions for parallel bivariate sequential tests. Biometrics, 52, 442–450.

    Article  MATH  Google Scholar 

  • DeMets, D. L., & Lan, K. K. G. (1994). Interim analysis: The alpha spending function approach. Statistics in Medicine, 13, 1341–1352.

    Article  Google Scholar 

  • Fleming, T. R., Harrington, D. P., & O’Brien, P. C. (1984). Designs for group sequential trials. Controlled Clinical Trials, 5, 348–361.

    Article  Google Scholar 

  • Geller, N. L. (1994). Discussion of ‘Interim analysis: The alpha spending approach’. Statistics in Medicine, 13, 1353–1356.

    Article  Google Scholar 

  • Hwang, I. K., Shih, W. J., & DeCani, J. S. (1990). Group sequential designs using a family of Type I error probability spending functions. Statistics in Medicine, 9, 1439–1445.

    Article  Google Scholar 

  • Jennison, C. (1987). Efficient group sequential tests with unpredictable group sizes. Biometrika, 74, 155–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Jennison, C., Turnbull, B. W. (1991b). Group sequential tests and repeated confidence intervals. In B. K. Ghosh & P. K. Sen (Eds.), Handbook of sequential analysis (pp. 283–311). New York: Marcel Dekker.

    Google Scholar 

  • Jennison, C., & Turnbull, B. W. (2000). Group sequential methods with applications to clinical trials. Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Kim, K., Boucher, H., & Tsiatis, A. A. (1995). Design and analysis of group sequential log-rank tests in maximum duration versus information trials. Biometrics, 51, 988–1000.

    Article  MATH  Google Scholar 

  • Kim, K., & DeMets, D. L. (1987b). Design and analysis of group sequential tests based on the Type I error spending rate function. Biometrika, 74, 149–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Lan, K. K. G., & DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials. Biometrika, 70, 659–663.

    Article  MathSciNet  MATH  Google Scholar 

  • Lan, K. K. G., & DeMets, D. L. (1989a). Changing frequency of interim analysis in sequential monitoring. Biometrics, 45, 1017–1020.

    Article  Google Scholar 

  • Lan, K. K. G., & DeMets, D. L. (1989b). Group sequential procedures: Calender versus information time. Statistics in Medicine, 8, 1191–1198.

    Article  Google Scholar 

  • Lan, K. K. G., Reboussin, D. M., & DeMets, D. L. (1994). Information and information fractions for design and sequential monitoring of clinical trials. Communications in Statistics - Theory and Methods, 23, 403–420.

    Article  MATH  Google Scholar 

  • Li, Z., & Geller, N. L. (1991). On the choice of times for data analysis in group sequential trials. Biometrics, 47, 745–750.

    Article  Google Scholar 

  • Müller, H. -H., & Schäfer, H. (1999). Optimization of testing times and critical values in sequential equivalence testing. Statistics in Medicine, 18, 1769–1788.

    Article  Google Scholar 

  • Pampallona, S., & Tsiatis, A. A. (1994). Group sequential designs for one-sided and two-sided hypothesis testing with provision for early stopping in favor of the null hypothesis. Journal of Statistical Planning and Inference, 42, 19–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Pampallona, S., Tsiatis, A. A., & Kim, K. (2001). Interim monitoring of group sequential trials using spending functions for the Type I and Type II error probabilities. Drug Information Journal, 35, 1113–1121.

    Article  Google Scholar 

  • Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials. Biometrika, 64, 191–199.

    Article  Google Scholar 

  • Pocock, S. J. (1982). Interim analyses for randomized clinical trials: The group sequential approach. Biometrics, 38, 153–162.

    Article  Google Scholar 

  • Proschan, M. A., Follmann, D. A., & Waclawiw, M. A. (1992). Effects on assumption violations on type I error rate in group sequential monitoring. Biometrics, 48, 1131–1143.

    Article  Google Scholar 

  • Proschan, M. A., Lan, K. K. G., & Wittes, J. T. (2006). Statistical monitoring of clinical trials. New York: Springer, Science and Business Media.

    MATH  Google Scholar 

  • Sidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62, 626–633.

    MathSciNet  MATH  Google Scholar 

  • Slepian, D. (1962). The one-sided barrier problem for Gaussian noise. Bell System Technical Journal, 41, 463–501.

    Article  MathSciNet  Google Scholar 

  • Slud, E., & Wei, L. J. (1982). Two-sample repeated significance tests based on the modified Wilcoxon statistic. Journal of the American Statistical Association, 77, 862–868.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, S. K., & Tsiatis, A. A. (1987). Approximately optimal one-parameter boundaries for group sequential trials. Biometrics, 43, 193–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Wassmer, G. (1999a). Group sequential monitoring with arbitrary inspection times. Biometrical Journal, 41, 197–216.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wassmer, G., Brannath, W. (2016). Procedures with Unequally Sized Stages. In: Group Sequential and Confirmatory Adaptive Designs in Clinical Trials. Springer Series in Pharmaceutical Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-32562-0_3

Download citation

Publish with us

Policies and ethics