Skip to main content

Force Control

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

figure a

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

6-D:

six-dimensional

DOF:

degree of freedom

PD:

proportional–derivative

PI:

proportional–integral

RCC:

remote center of compliance

References

  1. T.L. De Fazio, D.S. Seltzer, D.E. Whitney: The instrumented remote center of compliance, Ind. Robot 11(4), 238–242 (1984)

    Google Scholar 

  2. J. De Schutter, H. Van Brussel: Compliant robot motion II. A control approach based on external control loops, Int. J. Robotics Res. 7(4), 18–33 (1988)

    Article  Google Scholar 

  3. I. Nevins, D.E. Whitney: The force vector assembler concept, Proc. 1 CISM-IFToMM Symp. Theory Pract. Robotics Manip., Udine (1973)

    Google Scholar 

  4. M.T. Mason, J.K. Salisbury: Robot Hands and Mechanics of Manipulation (MIT Press, Cambridge 1985)

    Google Scholar 

  5. J.Y.S. Luh, W.D. Fisher, R.P.C. Paul: Joint torque control by direct feedback for industrial robots, IEEE Trans. Autom. Control 28, 153–161 (1983)

    Article  MATH  Google Scholar 

  6. G. Hirzinger, N. Sporer, A. Albu-Schäffer, M. Hähnle, R. Krenn, A. Pascucci, R. Schedl: DLR's torque-controlled light weight robot III – Are we reaching the technological limits now?, Proc. IEEE Int. Conf. Robotics Autom., Washington (2002) pp. 1710–1716

    Google Scholar 

  7. N. Hogan: Impedance control: An approach to manipulation: Parts I–III, ASME J. Dyn. Syst. Meas. Control 107, 1–24 (1985)

    Article  MATH  Google Scholar 

  8. H. Kazerooni, T.B. Sheridan, P.K. Houpt: Robust compliant motion for manipulators. Part I: The fundamental concepts of compliant motion, IEEE J. Robotics Autom. 2, 83–92 (1986)

    Article  Google Scholar 

  9. J.K. Salisbury: Active stiffness control of a manipulator in Cartesian coordinates, 19th IEEE Conf. Decis. Control, Albuquerque (1980) pp. 95–100

    Google Scholar 

  10. D.E. Whitney: Force feedback control of manipulator fine motions, ASME J. Dyn. Syst. Meas. Control 99, 91–97 (1977)

    Article  Google Scholar 

  11. M.T. Mason: Compliance and force control for computer controlled manipulators, IEEE Trans. Syst. Man Cybern. 11, 418–432 (1981)

    Article  Google Scholar 

  12. J. De Schutter, H. Van Brussel: Compliant robot motion I. A formalism for specifying compliant motion tasks, Int. J. Robotics Res. 7(4), 3–17 (1988)

    Article  Google Scholar 

  13. M.H. Raibert, J.J. Craig: Hybrid position/force control of manipulators, ASME J. Dyn. Syst. Meas. Control 103, 126–133 (1981)

    Article  Google Scholar 

  14. T. Yoshikawa: Dynamic hybrid position/force control of robot manipulators – Description of hand constraints and calculation of joint driving force, IEEE J. Robotics Autom. 3, 386–392 (1987)

    Article  Google Scholar 

  15. N.H. McClamroch, D. Wang: Feedback stabilization and tracking of constrained robots, IEEETrans. Autom. Control 33, 419–426 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.K. Mills, A.A. Goldenberg: Force and position control of manipulators during constrained motion tasks, IEEE Trans. Robotics Autom. 5, 30–46 (1989)

    Article  Google Scholar 

  17. O. Khatib: A unified approach for motion and force control of robot manipulators: The operational space formulation, IEEE J. Robotics Autom. 3, 43–53 (1987)

    Article  Google Scholar 

  18. L. Villani, C. Canudas de Wit, B. Brogliato: An exponentially stable adaptive control for force and position tracking of robot manipulators, IEEE Trans. Autom. Control 44, 798–802 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Chiaverini, L. Sciavicco: The parallel approach to force/position control of robotic manipulators, IEEE Trans. Robotics Autom. 9, 361–373 (1993)

    Article  Google Scholar 

  20. D.E. Whitney: Historical perspective and state of the art in robot force control, Int. J. Robotics Res. 6(1), 3–14 (1987)

    Article  Google Scholar 

  21. M. Vukobratović, Y. Nakamura: Force and contact control in robotic systems, Proc. IEEE Int. Conf. Robotics Autom., Atlanta (1993)

    Google Scholar 

  22. J. De Schutter, H. Bruyninckx, W.H. Zhu, M.W. Spong: Force control: A bird's eye view. In: Control Problems in Robotics and Automation, ed. by K.P. Valavanis, B. Siciliano (Springer, London 1998) pp. 1–17

    Google Scholar 

  23. D.M. Gorinevski, A.M. Formalsky, A.Y. Schneider: Force Control of Robotics Systems (CRC, Boca Raton 1997)

    MATH  Google Scholar 

  24. B. Siciliano, L. Villani: Robot Force Control (Kluwer, Boston 1999)

    Book  MATH  Google Scholar 

  25. D.E. Whitney: Quasi-static assembly of compliantly supported rigid parts, ASME J. Dyn. Syst. Meas. Control 104, 65–77 (1982)

    Article  MATH  Google Scholar 

  26. N. Hogan: On the stability of manipulators performing contact tasks, IEEE J. Robotics Autom. 4, 677–686 (1988)

    Article  Google Scholar 

  27. H. Kazerooni: Contact instability of the direct drive robot when constrained by a rigid environment, IEEE Trans. Autom. Control 35, 710–714 (1990)

    Article  MATH  Google Scholar 

  28. R. Kelly, R. Carelli, M. Amestegui, R. Ortega: Adaptive impedance control of robot manipulators, IASTED Int. J. Robotics Autom. 4(3), 134–141 (1989)

    Google Scholar 

  29. R. Colbaugh, H. Seraji, K. Glass: Direct adaptive impedance control of robot manipulators, J. Robotics Syst. 10, 217–248 (1993)

    Article  MATH  Google Scholar 

  30. Z. Van Lu, A.A. Goldenberg: Robust impedance control and force regulation: Theory and experiments, Int. J. Robotics Res. 14, 225–254 (1995)

    Article  Google Scholar 

  31. R.J. Anderson, M.W. Spong: Hybrid impedance control of robotic manipulators, IEEE J. Robotics Autom. 4, 549–556 (1986)

    Article  Google Scholar 

  32. J. Lončarić: Normal forms of stiffness and compliance matrices, IEEE J. Robotics Autom. 3, 567–572 (1987)

    Article  Google Scholar 

  33. T. Patterson, H. Lipkin: Structure of robot compliance, ASME J. Mech. Design 115, 576–580 (1993)

    Article  Google Scholar 

  34. E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: Part I – General theory and geometric potential function method, ASME J. Dyn. Syst. Meas. Control 120, 496–500 (1998)

    Article  Google Scholar 

  35. E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: Part II – Exponential and generalized coordinate method, ASME J. Dyn. Syst. Meas. Control 120, 501–506 (1998)

    Article  Google Scholar 

  36. R.L. Hollis, S.E. Salcudean, A.P. Allan: A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: Design, modeling and control, IEEE Trans. Robotics Autom. 7, 320–333 (1991)

    Article  Google Scholar 

  37. M.A. Peshkin: Programmed compliance for error corrective assembly, IEEE Trans. Robotics Autom. 6, 473–482 (1990)

    Article  Google Scholar 

  38. J.M. Shimmels, M.A. Peshkin: Admittance matrix design for force-guided assembly, IEEE Trans. Robotics Autom. 8, 213–227 (1992)

    Article  Google Scholar 

  39. E.D. Fasse, J.F. Broenink: A spatial impedance controller for robotic manipulation, IEEE Trans. Robotics Autom. 13, 546–556 (1997)

    Article  Google Scholar 

  40. F. Caccavale, C. Natale, B. Siciliano, L. Villani: Six-DOF impedance control based on angle/axis representations, IEEE Trans. Robotics Autom. 15, 289–300 (1999)

    Article  Google Scholar 

  41. F. Caccavale, C. Natale, B. Siciliano, L. Villani: Robot impedance control with nondiagonal stiffness, IEEE Trans. Autom. Control 44, 1943–1946 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Stramigioli: Modeling and IPC Control of Interactive Mechanical Systems – A Coordinate Free Approach (Springer, London 2001)

    MATH  Google Scholar 

  43. C. Ott: Cartesian Impedance Control of Redundant and Flexible-Joint Robots, Springer Tracts in Advanced Robotics (STAR) (Springer, Berlin, Heidelberg 2008)

    Google Scholar 

  44. C. Ott, A. Albu-Schäffer, A. Kugi, G. Hirzinger: On the passivity based impedance control of flexible joint robots, IEEE Trans. Robotics 24, 416–429 (2008)

    Article  Google Scholar 

  45. H. Bruyninckx, J. De Schutter: Specification of Force-controlled actions in the task frame formalism – A synthesis, IEEE Trans. Robotics Autom. 12, 581–589 (1996)

    Article  Google Scholar 

  46. H. Lipkin, J. Duffy: Hybrid twist and wrench control for a robotic manipulator, ASME J. Mech. Design 110, 138–144 (1988)

    Google Scholar 

  47. J. Duffy: The fallacy of modern hybrid control theory that is based on orthogonal complements of twist and wrench spaces, J. Robotics Syst. 7, 139–144 (1990)

    Article  Google Scholar 

  48. K.L. Doty, C. Melchiorri, C. Bonivento: A theory of generalized inverses applied to robotics, Int. J. Robotics Res. 12, 1–19 (1993)

    Article  Google Scholar 

  49. T. Patterson, H. Lipkin: Duality of constrained elastic manipulation, Proc. IEEE Conf. Robotics Autom., Sacramento (1991) pp. 2820–2825

    Google Scholar 

  50. J. De Schutter, H. Bruyninckx, S. Dutré, J. De Geeter, J. Katupitiya, S. Demey, T. Lefebvre: Estimation first-order geometric parameters and monitoring contact transitions during force-controlled compliant motions, Int. J. Robotics Res. 18(12), 1161–1184 (1999)

    Article  Google Scholar 

  51. T. Lefebvre, H. Bruyninckx, J. De Schutter: Polyedral contact formation identification for auntonomous compliant motion, IEEE Trans. Robotics Autom. 19, 26–41 (2007)

    Article  Google Scholar 

  52. J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aerbeliën, K. Claes, H. Bruyninckx: Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty, Int. J. Robotics Res. 26(5), 433–455 (2007)

    Article  Google Scholar 

  53. A. De Luca, C. Manes: Modeling robots in contact with a dynamic environment, IEEE Trans. Robotics Autom. 10, 542–548 (1994)

    Article  Google Scholar 

  54. T. Yoshikawa, T. Sugie, N. Tanaka: Dynamic hybrid position/force control of robot manipulators – Controller design and experiment, IEEE J. Robotics Autom. 4, 699–705 (1988)

    Article  Google Scholar 

  55. J. De Schutter, D. Torfs, H. Bruyninckx, S. Dutré: Invariant hybrid force/position control of a velocity controlled robot with compliant end effector using modal decoupling, Int. J. Robotics Res. 16(3), 340–356 (1997)

    Article  Google Scholar 

  56. R. Lozano, B. Brogliato: Adaptive hybrid force-position control for redundant manipulators, IEEE Trans. Autom. Control 37, 1501–1505 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  57. L.L. Whitcomb, S. Arimoto, T. Naniwa, F. Ozaki: Adaptive model-based hybrid control if geometrically constrained robots, IEEE Trans. Robotics Autom. 13, 105–116 (1997)

    Article  Google Scholar 

  58. B. Yao, S.P. Chan, D. Wang: Unified formulation of variable structure control schemes for robot manipulators, IEEE Trans. Autom. Control 39, 371–376 (1992)

    MathSciNet  MATH  Google Scholar 

  59. S. Chiaverini, B. Siciliano, L. Villani: Force/position regulation of compliant robot manipulators, IEEE Trans. Autom. Control 39, 647–652 (1994)

    Article  MATH  Google Scholar 

  60. J.T.-Y. Wen, S. Murphy: Stability analysis of position and force control for robot arms, IEEE Trans. Autom. Control 36, 365–371 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. R. Volpe, P. Khosla: A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Trans. Autom. Control 38, 1634–1650 (1993)

    Article  MathSciNet  Google Scholar 

  62. L.S. Wilfinger, J.T. Wen, S.H. Murphy: Integral force control with robustness enhancement, IEEE Control Syst. Mag. 14(1), 31–40 (1994)

    Article  Google Scholar 

  63. S. Katsura, Y. Matsumoto, K. Ohnishi: Modeling of force sensing and validation of disturbance observer for force control, IEEE Trans. Ind. Electron. 54, 530–538 (2007)

    Article  Google Scholar 

  64. A. Stolt, M. Linderoth, A. Robertsson, R. Johansson: Force controlled robotic assembly without a force sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 1538–1543

    Google Scholar 

  65. S.D. Eppinger, W.P. Seering: Introduction to dynamic models for robot force control, IEEE Control Syst. Mag. 7(2), 48–52 (1987)

    Article  Google Scholar 

  66. C.H. An, J.M. Hollerbach: The role of dynamic models in Cartesian force control of manipulators, Int. J. Robotics Res. 8(4), 51–72 (1989)

    Article  Google Scholar 

  67. R. Volpe, P. Khosla: A theoretical and experimental investigation of impact control for manipulators, Int. J. Robotics Res. 12, 351–365 (1993)

    Article  Google Scholar 

  68. J.K. Mills, D.M. Lokhorst: Control of robotic manipulators during general task execution: A discontinuous control approach, Int. J. Robotics Res. 12, 146–163 (1993)

    Article  Google Scholar 

  69. T.-J. Tarn, Y. Wu, N. Xi, A. Isidori: Force regulation and contact transition control, IEEE Control Syst. Mag. 16(1), 32–40 (1996)

    Article  Google Scholar 

  70. B. Brogliato, S. Niculescu, P. Orhant: On the control of finite dimensional mechanical systems with unilateral constraints, IEEE Trans. Autom. Control 42, 200–215 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Villani .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Recent research in impedance control available from http://handbookofrobotics.org/view-chapter/09/videodetails/684

:

Integration of force strategies and natural admittance control available from http://handbookofrobotics.org/view-chapter/09/videodetails/685

:

Experiments of spatial impedance control available from http://handbookofrobotics.org/view-chapter/09/videodetails/686

:

Compliant robot motion; Control and task specification available from http://handbookofrobotics.org/view-chapter/09/videodetails/687

:

COMRADE: Compliant motion research and development environment available from http://handbookofrobotics.org/view-chapter/09/videodetails/691

:

Robotic assembly of emergency stop buttons available from http://handbookofrobotics.org/view-chapter/09/videodetails/692

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Villani, L., De Schutter, J. (2016). Force Control. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics