Motion Control

  • Wan Kyun ChungEmail author
  • Li-Chen Fu
  • Torsten Kröger
Part of the Springer Handbooks book series (SHB)


This chapter will focus on the motion control of robotic rigid manipulators. In other words, this chapter does not treat the motion control of mobile robots, flexible manipulators, and manipulators with elastic joints. The main challenge in the motion control problem of rigid manipulators is the complexity of their dynamics and uncertainties. The former results from nonlinearity and coupling in the robot manipulators. The latter is twofold: structured and unstructured. Structured uncertainty means imprecise knowledge of the dynamic parameters and will be touched upon in this chapter, whereas unstructured uncertainty results from joint and link flexibility, actuator dynamics, friction, sensor noise, and unknown environment dynamics, and will be treated in other chapters.

In this chapter, we begin with an introduction to motion control of robot manipulators from a fundamental viewpoint, followed by a survey and brief review of the relevant advanced materials. Specifically, the dynamic model and useful properties of robot manipulators are recalled in Sect. 8.1. The joint and operational space control approaches, two different viewpoints on control of robot manipulators, are compared in Sect. 8.2. Independent joint control and proportional–integral–derivative (PID ) control, widely adopted in the field of industrial robots, are presented in Sects. 8.3 and 8.4, respectively. Tracking control, based on feedback linearization, is introduced in Sect. 8.5. The computed-torque control and its variants are described in Sect. 8.6. Adaptive control is introduced in Sect. 8.7 to solve the problem of structural uncertainty, whereas the optimality and robustness issues are covered in Sect. 8.8. To compute suitable set point signals as input values for these motion controllers, Sect. 8.9 introduces reference trajectory planning concepts. Since most controllers of robot manipulators are implemented by using microprocessors, the issues of digital implementation are discussed in Sect. 8.10. Finally, learning control, one popular approach to intelligent control, is illustrated in Sect. 8.11.






direct current


degree of freedom


digital signal processor


global asymptotic stability






input-output-to-state stability


input-to-state stability




model reference adaptive control






propositional integral


semiglobal asymptotic stability


semiglobal uniform ultimate boundedness


single input single-output


uniform ultimate boundedness


  1. 8.1
    C. Canudas de Wit, B. Siciliano, G. Bastin: Theory of Robot Control (Springer, London 1996)zbMATHCrossRefGoogle Scholar
  2. 8.2
    J.J. Craig: Adaptive Control of Mechanical Manipulators, Ph.D. Thesis (UMI Dissertation Information Service, Ann Arbor 1986)CrossRefGoogle Scholar
  3. 8.3
    R.J. Schilling: Fundametals of Robotics: Analysis and Control (Prentice Hall, Englewood Cliffs 1989)Google Scholar
  4. 8.4
    L. Sciavicco, B. Siciliano: Modeling and Control of Robot Manipulator (McGraw-Hill, New York 1996)zbMATHGoogle Scholar
  5. 8.5
    M.W. Spong, M. Vidyasagar: Robot Dynamics and Control (Wiley, New York 1989)Google Scholar
  6. 8.6
    M.W. Spong, F.L. Lewis, C.T. Abdallah (Eds.): Robot Control (IEEE, New York 1989)zbMATHGoogle Scholar
  7. 8.7
    C.H. An, C.G. Atkeson, J.M. Hollerbach: Model–Based Control of a Robot Manipulator (MIT Press, Cambridge, 1988)Google Scholar
  8. 8.8
    R.M. Murray, Z. Xi, S.S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton 1994)zbMATHGoogle Scholar
  9. 8.9
    T. Yoshikawa: Foundations of Robotics (MIT Press, Cambridge 1990)Google Scholar
  10. 8.10
    O. Khatib: A unified approach for motion and force control of robot manipulators: The operational space formulation, IEEE J. Robotics Autom. 3(1), 43–53 (1987)CrossRefGoogle Scholar
  11. 8.11
    J.Y.S. Luh, M.W. Walker, R.P.C. Paul: Resolved–acceleration control of mechanical manipulator, IEEE Trans. Autom. Control 25(3), 468–474 (1980)zbMATHCrossRefGoogle Scholar
  12. 8.12
    S. Arimoto, F. Miyazaki: Stability and robustness of PID feedback control for robot manipulators of sensory capability. In: Robotics Research, ed. by M. Brady, R. Paul (MIT Press, Cambridge 1984) pp. 783–799Google Scholar
  13. 8.13
    L.C. Fu: Robust adaptive decentralized control of robot manipulators, IEEE Trans. Autom. Control 37(1), 106–110 (1992)MathSciNetCrossRefGoogle Scholar
  14. 8.14
    H. Seraji: Decentralized adaptive control of manipulators: Theory, simulation, and experimentation, IEEE Trans. Robotics Autom. 5(2), 183–201 (1989)CrossRefGoogle Scholar
  15. 8.15
    J.G. Ziegler, N.B. Nichols: Optimum settings for automatic controllers, Trans. ASME 64, 759–768 (1942)Google Scholar
  16. 8.16
    Y. Choi, W.K. Chung: PID Trajectory Tracking Control for Mechanical Systems, Lecture Notes in Control and Information Sciences, Vol. 289 (Springer, New York 2004)zbMATHCrossRefGoogle Scholar
  17. 8.17
    R. Kelly: PD control with desired gravity compensation of robot manipulators: A review, Int. J. Robotics Res. 16(5), 660–672 (1997)CrossRefGoogle Scholar
  18. 8.18
    M. Takegaki, S. Arimoto: A new feedback method for dynamic control of manipulators, Trans. ASME J. Dyn. Syst. Meas, Control 103, 119–125 (1981)zbMATHGoogle Scholar
  19. 8.19
    P. Tomei: Adaptive PD controller for robot manipulators, IEEE Trans. Robotics Autom. 7(4), 565–570 (1991)CrossRefGoogle Scholar
  20. 8.20
    R. Ortega, A. Loria, R. Kelly: A semi-globally stable output feedback PI${}^{2}$ D regulator for robot manipulators, IEEE Trans. Autom. Control 40(8), 1432–1436 (1995)zbMATHCrossRefGoogle Scholar
  21. 8.21
    D. Angeli: Input-to-State stability of PD-controlled robotic systems, Automatica 35, 1285–1290 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 8.22
    J.A. Ramirez, I. Cervantes, R. Kelly: PID regulation of robot manipulators: Stability and performance, Syst. Control Lett. 41, 73–83 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 8.23
    R. Kelly: Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions, IEEE Trans. Autom. Control 43(7), 934–937 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 8.24
    Z. Qu, J. Dorsey: Robust tracking control of robots by a linear feedback law, IEEE Trans. Autom. Control 36(9), 1081–1084 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 8.25
    H. Berghuis, H. Nijmeijer: Robust control of robots via linear estimated state feedback, IEEE Trans. Autom. Control 39(10), 2159–2162 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 8.26
    Y. Choi, W.K. Chung, I.H. Suh: Performance and $\mathcal{H}_{\infty}$ optimality of PID trajectory tracking controller for Lagrangian systems, IEEE Trans. Robotics Autom. 17(6), 857–869 (2001)CrossRefGoogle Scholar
  27. 8.27
    K. Aström, T. Hagglund: PID Controllers: Theory, Design, and Tuning (Instrument Society of America, Research Triangle Park 1995)Google Scholar
  28. 8.28
    C.C. Yu: Autotuning of PID Controllers: Relay Feedback Approach (Springer, London 1999)zbMATHCrossRefGoogle Scholar
  29. 8.29
    F.L. Lewis, C.T. Abdallah, D.M. Dawson: Control of Robot Manipulators (Macmillan, New York 1993)Google Scholar
  30. 8.30
    A. Isidori: Nonlinear Control Systems: An Introduction, Lecture Notes in Control and Information Sciences, Vol. 72 (Springer, New York 1985)zbMATHCrossRefGoogle Scholar
  31. 8.31
    H. Berghuis, H. Nijmeijer: A passivity approach to controller–observer design for robots, IEEE Trans. Robotics Autom. 9, 740–754 (1993)CrossRefGoogle Scholar
  32. 8.32
    J.J. Slotine, W. Li: On the adaptive control of robot manipulators, Int. J. Robotics Res. 6(3), 49–59 (1987)CrossRefGoogle Scholar
  33. 8.33
    G. Liu, A.A. Goldenberg: Comparative study of robust saturation–based control of robot manipulators: analysis and experiments, Int. J. Robotics Res. 15(5), 473–491 (1996)CrossRefGoogle Scholar
  34. 8.34
    D.M. Dawson, M. Grabbe, F.L. Lewis: Optimal control of a modified computed–torque controller for a robot manipulator, Int. J. Robotics Autom. 6(3), 161–165 (1991)Google Scholar
  35. 8.35
    D.M. Dawson, Z. Qu, J. Duffie: Robust tracking control for robot manipulators: Theory, simulation and implementation, Robotica 11, 201–208 (1993)CrossRefGoogle Scholar
  36. 8.36
    A. Jaritz, M.W. Spong: An experimental comparison of robust control algorithms on a direct drive manipulator, IEEE Trans. Control Syst. Technol. 4(6), 627–640 (1996)CrossRefGoogle Scholar
  37. 8.37
    A. Isidori: Nonlinear Control Systems, 3rd edn. (Springer, New York 1995)zbMATHCrossRefGoogle Scholar
  38. 8.38
    J.J. Slotine, W. Li: Applied Nonlinear Control (Prentice Hall, Englewood Cliffs 1991)zbMATHGoogle Scholar
  39. 8.39
    W.J. Rugh: Linear System Theory, 2nd edn. (Prentice Hall, Upper Saddle River 1996)zbMATHGoogle Scholar
  40. 8.40
    M.W. Spong, M. Vidyasagar: Robust microprocessor control of robot manipulators, Automatica 23(3), 373–379 (1987)zbMATHCrossRefGoogle Scholar
  41. 8.41
    H.K. Khalil: Nonlinear Systems, 3rd edn. (Prentice Hall, Upper Saddle River 2002)zbMATHGoogle Scholar
  42. 8.42
    M. Vidysagar: Nonlinear Systems Analysis, 2nd edn. (Prentice Hall, Englewood Ciffs 1993)Google Scholar
  43. 8.43
    J.T. Wen: A unified perspective on robot control: The energy Lyapunov function approach, Int. J. Adapt. Control Signal Process. 4, 487–500 (1990)zbMATHCrossRefGoogle Scholar
  44. 8.44
    R. Ortega, M.W. Spong: Adaptive motion control of rigid robots: A tutorial, Automatica 25(6), 877–888 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 8.45
    N. Sadegh, R. Horowitz: Stability and robustness analysis of a class of adaptive contollers for robotic manipulators, Int. J. Robotics Res. 9(3), 74–92 (1990)CrossRefGoogle Scholar
  46. 8.46
    S. Dubowsky, D.T. DesForges: The application of model-reference adaptive control to robotic manipulators, ASME J. Dyn. Syst. Meas. Control 37(1), 106–110 (1992)zbMATHGoogle Scholar
  47. 8.47
    S.H. Hsu, L.C. Fu: A fully adaptive decentralized control of robot manipulators, Automatica 42, 1761–1767 (2008)zbMATHCrossRefGoogle Scholar
  48. 8.48
    A. Balestrino, G. de Maria, L. Sciavicco: An adaptive model following control for robotic manipulators, ASME J. Dyn. Syst. Meas. Control 105, 143–151 (1983)zbMATHCrossRefGoogle Scholar
  49. 8.49
    S. Nicosia, P. Tomei: Model reference adaptive control algorithms for industrial robots, Automatica 20, 635–644 (1984)zbMATHCrossRefGoogle Scholar
  50. 8.50
    R. Horowitz, M. Tomizuka: An adaptive control scheme for mechanical manipulators-Compensation of nonlinearity and decoupling control, ASME J. Dyn. Syst. Meas. Control 108, 127–135 (1986)zbMATHCrossRefGoogle Scholar
  51. 8.51
    I.D. Laudau: Adaptive Control: The Model Reference Approach (Dekker, New York 1979)Google Scholar
  52. 8.52
    R. Lozano, C. Canudas de Wit: Passivity based adaptive control for mechanical manipulators using LS type estimation, IEEE Trans. Autom. Control 35(12), 1363–1365 (1990)zbMATHCrossRefGoogle Scholar
  53. 8.53
    B. Brogliato, I.D. Laudau, R. Lozano: Passive least squares type estimation algorithm for direct adaptive control, Int. J. Adapt. Control Signal Process. 6, 35–44 (1992)zbMATHCrossRefGoogle Scholar
  54. 8.54
    R. Johansson: Adaptive control of robot manipulator motion, IEEE Trans. Robotics Autom. 6(4), 483–490 (1990)CrossRefGoogle Scholar
  55. 8.55
    M.W. Walker: Adaptive control of manipulators containing closed kinematic loops, IEEE Trans. Robotics Autom. 6(1), 10–19 (1990)CrossRefGoogle Scholar
  56. 8.56
    J.S. Reed, P.A. Ioannou: Instability analysis and robust adaptive control of robotic manipulators, IEEE Trans. Autom. Control 5(3), 74–92 (1989)Google Scholar
  57. 8.57
    G. Tao: On robust adaptive control of robot manipulators, Automatica 28(4), 803–807 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 8.58
    H. Berghuis, R. Ogata, H. Nijmeijer: A robust adaptive controller for robot manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992) pp. 1876–1881Google Scholar
  59. 8.59
    R. Johansson: Quadratic optimization of motion coordination and control, IEEE Trans. Autom. Control 35(11), 1197–1208 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 8.60
    Z. Qu, D.M. Dawson: Robust Tracking Control of Robot Manipulators (IEEE, Piscataway 1996)zbMATHGoogle Scholar
  61. 8.61
    P. Dorato, C. Abdallah, V. Cerone: Linear-Quadratic Control (Prentice Hall, Upper Saddle River 1995)zbMATHGoogle Scholar
  62. 8.62
    A. Locatelli: Optimal Control: An Introduction (Birkhäuser, Basel 2001)zbMATHCrossRefGoogle Scholar
  63. 8.63
    A. Isidori: Feedback control of nonlinear systems, Int. J. Robust Nonlin. Control 2, 291–311 (1992)zbMATHCrossRefGoogle Scholar
  64. 8.64
    A.J. der van Schaft: Nonlinear state space $\mathcal{H}_{\infty}$ control theory. In: Essays on Control: Perspective in Theory and its Applications, ed. by H.L. Trentelman, J.C. Willems (Birkhäuser, Basel 1993) pp. 153–190CrossRefGoogle Scholar
  65. 8.65
    A.J. der van Schaft: $L_2$-gain analysis of nonlinear systems and nonlinear state feedback $\mathcal{H}_{\infty}$ control, IEEE Trans. Autom. Control 37(6), 770–784 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 8.66
    J. Park, W.K. Chung, Y. Youm: Analytic nonlinear $\mathcal{H}_{\infty}$ inverse-optimal control for Euler–Lagrange system, IEEE Trans. Robotics Autom. 16(6), 847–854 (2000)CrossRefGoogle Scholar
  67. 8.67
    B.S. Chen, T.S. Lee, J.H. Feng: A nonlinear $\mathcal{H}_{\infty}$ control design in robotics systems under parametric perturbation and external disturbance, Int. J. Control 59(12), 439–461 (1994)zbMATHCrossRefGoogle Scholar
  68. 8.68
    J. Park, W.K. Chung: Design of a robust $\mathcal{H}_{\infty}$ PID control for industrial manipulators, ASME J. Dyn. Syst. Meas. Control 122(4), 803–812 (2000)CrossRefGoogle Scholar
  69. 8.69
    R.H. Castain, R.P. Paul: An on-line dynamic trajectory generator, Int. J. Robotics Res. 3(1), 68–72 (1984)CrossRefGoogle Scholar
  70. 8.70
    T. Kröger: On-Line Trajectory Generation in Robotic Systems, Springer Tracts in Advanced Robotics, Vol. 58 (Springer, Berlin, Heidelberg 2010)zbMATHGoogle Scholar
  71. 8.71
    D. Simon, C. Isik: A trigonometric trajectory generator for robotic arms, Int. J. Control 57(3), 505–517 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 8.72
    L. Biagiotti, C. Melchiorri: Trajectory Planning for Automatic Machines and Robots (Springer, Berlin, Heidelberg 2008)Google Scholar
  73. 8.73
    J.E. Bobrow: Optimal robot path planning using the minimum-time criterion, IEEE J. Robotics Autom. 4(4), 443–450 (1988)CrossRefGoogle Scholar
  74. 8.74
    K.G. Shin, N.D. McKay: Minimum-time control of robotic manipulators with geometric path constraints, IEEE Trans. Autom. Control 30(5), 531–541 (1985)zbMATHCrossRefGoogle Scholar
  75. 8.75
    F. Pfeiffer, R. Johanni: A concept for manipulator trajectory planning, Proc. Int. IEEE Conf. Robotics Autom. (ICRA) (1986) pp. 1399–1405Google Scholar
  76. 8.76
    W. Khalil, E. Dombre: Trajectory generation. In: Modeling, Identification and Control of Robots, ed. by W. Khalil, E. Dombre (Butterworth-Heinemann, Oxford 2004)Google Scholar
  77. 8.77
    A.I. Kostrikin, Y.I. Manin: Linear Algebra and Geometry (Gordon and Breach Sci. Publ., Amsterdam 1997)zbMATHGoogle Scholar
  78. 8.78
    M.E. Kahn, B. Roth: The near-minimum-time control of open-loop articulated kinematic chains, ASME J. Dyn. Syst. Meas. Control 93, 164–172 (1971)CrossRefGoogle Scholar
  79. 8.79
    M. Brady: Trajectory planning. In: Robot Motion: Planning and Control, ed. by M. Brady, J.M. Hollerbach, T.L. Johnson, T. Lozano-Pérez, M.T. Mason (MIT Press, Cambridge 1982)Google Scholar
  80. 8.80
    R.P.C. Paul: Manipulator cartesian path control. In: Robot Motion: Planning and Control, ed. by M. Brady, J.M. Hollerbach, T.L. Johnson, T. Lozano-Pérez, M.T. Mason (MIT Press, Cambridge 1982)Google Scholar
  81. 8.81
    R.H. Taylor: Planning and execution of straight-line manipulator trajectories. In: Robot Motion: Planning and Control, ed. by M. Brady, J.M. Hollerbach, T.L. Johnson, T. Lozano-Pérez, M.T. Mason (MIT Press, Cambridge 1982)Google Scholar
  82. 8.82
    C.-S. Lin, P.-R. Chang, J.Y.S. Luh: Formulation and optimization of cubic polynomial joint trajectories for industrial robots, IEEE Trans. Autom. Control 28(12), 1066–1074 (1983)zbMATHCrossRefGoogle Scholar
  83. 8.83
    J.M. Hollerbach: Dynamic scaling of manipulator trajectories, ASME J. Dyn. Syst. Meas. Control 106(1), 102–106 (1984)zbMATHCrossRefGoogle Scholar
  84. 8.84
    K.J. Kyriakopoulos, G.N. Sridis: Minimum jerk path generation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1988) pp. 364–369Google Scholar
  85. 8.85
    J.-J.E. Slotine, H.S. Yang: Improving the efficiency of time-optimal path-following algorithms, IEEE Trans. Robotics Autom. 5(1), 118–124 (1989)CrossRefGoogle Scholar
  86. 8.86
    Z. Shiller, H.-H. Lu: Computation of path constrained time optimal motions with dynamic singularities, ASME J. Dyn. Syst. Meas. Control 114(1), 34–40 (1992)zbMATHCrossRefGoogle Scholar
  87. 8.87
    P. Fiorini, Z. Shiller: Time optimal trajectory planning in dynamic environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 1553–1558CrossRefGoogle Scholar
  88. 8.88
    O. Dahl, L. Nielsen: Torque limited path following by on-line trajectory time scaling, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 1122–1128Google Scholar
  89. 8.89
    B. Cao, G.I. Dodds, G.W. Irwin: Time-optimal and smooth constrained path planning for robot manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 1853–1858Google Scholar
  90. 8.90
    B. Cao, G.I. Dodds, G.W. Irwin: A practical approach to near time-optimal inspection-task-sequence planning for two cooperative industrial robot arms, Int. J. Robotics Res. 17(8), 858–867 (1998)CrossRefGoogle Scholar
  91. 8.91
    D. Constantinescu, E.A. Croft: Smooth and time-optimal trajectory planning for industrial manipulators along specified paths, J. Robotics Syst. 17(5), 233–249 (2000)zbMATHCrossRefGoogle Scholar
  92. 8.92
    S. Macfarlane, E.A. Croft: Jerk-bounded manipulator trajectory planning: Design for real-time applications, IEEE Trans. Robotics Autom. 19(1), 42–52 (2003)CrossRefGoogle Scholar
  93. 8.93
    R.L. Andersson: A Robot Ping-Pong Player: Experiment in Real-Time Intelligent Control (MIT Press, Cambridge 1988)Google Scholar
  94. 8.94
    R.L. Andersson: Aggressive trajectory generator for a robot ping-pong player, IEEE Control Syst. Mag. 9(2), 15–21 (1989)CrossRefGoogle Scholar
  95. 8.95
    J. Lloyd, V. Hayward: Trajectory generation for sensor-driven and time-varying tasks, Int. J. Robotics Res. 12(4), 380–393 (1993)CrossRefGoogle Scholar
  96. 8.96
    K. Ahn, W.K. Chung, Y. Yourn: Arbitrary states polynomial-like trajectory (ASPOT) generation, Proc. IEEE 30th Annu. Conf. Ind. Electron. Soc. (2004) pp. 123–128Google Scholar
  97. 8.97
    X. Broquère, D. Sidobre, I. Herrera-Aguilar: Soft motion trajectory planner for service manipulator robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 2808–2813Google Scholar
  98. 8.98
    R. Haschke, E. Weitnauer, H. Ritter: On-line planning of time-optimal, jerk-limited trajectories, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 3248–3253Google Scholar
  99. 8.99
    J.J. Craig: Introduction to Robotics: Mechanics and Control (Prentice Hall, Upper Saddle River 2003)Google Scholar
  100. 8.100
    K.S. Fu, R.C. Gonzalez, C.S.G. Lee: Robotics: Control, Sensing, Vision and Intelligence (McGraw-Hill, New York 1988)Google Scholar
  101. 8.101
    M.W. Spong, S.A. Hutchinson, M. Vidyasagar: Robot Modeling and Control (Wiley, New York 2006)Google Scholar
  102. 8.102
    S. Arimoto: Mathematical theory or learning with application to robot control. In: Adaptive and Learning Control, ed. by K.S. Narendra (Plenum, New York 1986) pp. 379–388Google Scholar
  103. 8.103
    S. Kawamura, F. Miyazaki, S. Arimoto: Realization of robot motion based on a learning method, IEEE Trans. Syst. Man. Cybern. 18(1), 126–134 (1988)CrossRefGoogle Scholar
  104. 8.104
    G. Heinzinger, D. Frewick, B. Paden, F. Miyazaki: Robust learning control, Proc. IEEE Int. Conf. Decis. Control (1989)Google Scholar
  105. 8.105
    S. Arimoto: Robustness of learning control for robot manipulators, Proc. IEEE Int. Conf. Decis. Control (1990) pp. 1523–1528Google Scholar
  106. 8.106
    S. Arimoto, T. Naiwa, H. Suzuki: Selective learning with a forgetting factor for robotic motion control, Proc. IEEE Int. Conf. Decis. Control (1991) pp. 728–733Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Robotics LaboratoryPOSTECHPohangKorea
  2. 2.Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.Google Inc.Mountain ViewUSA

Personalised recommendations