Skip to main content

Telerobotics

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter we present an overview of the field of telerobotics with a focus on control aspects. To acknowledge some of the earliest contributions and motivations the field has provided to robotics in general, we begin with a brief historical perspective and discuss some of the challenging applications. Then, after introducing and classifying the various system architectures and control strategies, we emphasize bilateral control and force feedback. This particular area has seen intense research work in the pursuit of telepresence. We also examine some of the emerging efforts, extending telerobotic concepts to unconventional systems and applications. Finally, we suggest some further reading for a closer engagement with the field.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-D:

six-dimensional

ASM:

advanced servomanipulator

AUV:

autonomous aquatic vehicle

CEA:

Commissariat à l’Énergie Atomique

CPU:

central processing unit

DLR:

German Aerospace Center

DOF:

degree of freedom

EBA:

energy bounding algorithm

EP:

energy packet

EVA:

extravehicular activity

I/O:

input/output

ISS:

international space station

JPL:

Jet Propulsion Laboratory

LARS:

Laparoscopic Assistant Robotic System

MIT:

Massachusetts Institute of Technology

MMMS:

multiple master multiple-slave

MMSS:

multiple master single-slave

NASA:

National Aeronautics and Space Agency

PC:

passivity controller

PD:

proportional–derivative

PO:

passivity observer

PSPM:

passive set-position modulation

RAMS:

robot-assisted microsurgery

ROKVISS:

robotics component verification on ISS

SMMS:

single-master multiple-slave

SMSS:

single-master single-slave

tEODor:

telerob explosive ordnance disposal and observation robot

TSP:

telesensor programming

UAV:

unmanned aerial vehicle

WMR:

wheeled mobile robot

ZOH:

zero order hold

References

  1. M. Buss, G. Schmidt: Control problems in multi-modal telepresence systems. In: Advances in Control, ed. by P.M. Frank (Springer, London 1999) pp. 65–101

    Chapter  Google Scholar 

  2. W.R. Ferell, T.B. Sheridan: Supervisory control of remote manipulation, IEEE Spectrum 4(10), 81–88 (1967)

    Article  Google Scholar 

  3. R.C. Goertz: Fundamentals of general-purpose remote manipulators, Nucleonics 10(11), 36–42 (1952)

    Google Scholar 

  4. R.C. Goertz: Mechanical master–slave manipulator, Nucleonics 12(11), 45–46 (1954)

    Google Scholar 

  5. R.C. Goertz, F. Bevilacqua: A force-reflecting positional servomechanism, Nucleonics 10(11), 43–45 (1952)

    Google Scholar 

  6. W.R. Ferell: Remote manipulation with transmission delay, IEEE Trans. Hum. Factors Electron. 6, 24–32 (1965)

    Article  Google Scholar 

  7. T.B. Sheridan, W.R. Ferell: Remote manipulative control with transmission delay, IEEE Trans. Hum. Factors Electron. 4, 25–29 (1963)

    Article  Google Scholar 

  8. F. Miyazaki, S. Matsubayashi, T. Yoshimi, S. Arimoto: A new control methodology towards advanced teleoperation of master–slave robot systems, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 997–1002

    Google Scholar 

  9. R.J. Anderson, M.W. Spong: Asymptotic stability for force reflecting teleoperators with time delay, Int. J. Robotics Res. 11(2), 135–149 (1992)

    Article  Google Scholar 

  10. G. Niemeyer, J.-J.E. Slotine: Stable adaptive teleoperation, IEEE J. Ocean. Eng. 16(1), 152–162 (1991)

    Article  Google Scholar 

  11. J.E. Colgate: Robust impedance shaping telemanipulation, IEEE Trans. Robotics Autom. 9(4), 374–384 (1993)

    Article  Google Scholar 

  12. B. Hannaford: A design framework for teleoperators with kinesthetic feedback, IEEE Trans. Robotics Autom. 5(4), 426–434 (1989)

    Article  Google Scholar 

  13. D.A. Lawrence: Stability and transparency in bilateral teleoperation, IEEE Trans. Robotics Autom. 9(5), 624–637 (1993)

    Article  Google Scholar 

  14. D. Kuban, H.L. Martin: An advanced remotely maintainable servomanipulator concept, Proc. 1984 Natl. Top. Meet. Robotics Remote Handl. Hostile Environ., Washington (1984)

    Google Scholar 

  15. J. Vertut, P. Coiffet: Teleoperation and Robotics: Evolution and Development (Kogan Page, London 1985)

    Book  Google Scholar 

  16. J. Vertut: MA23M contained servo manipulator with television camera, PICA and PIADE telescopic supports, with computer-integrated control, Proc. 28th Remote Syst. Technol. Conf. (1980) pp. 13–19

    Google Scholar 

  17. J. Vertut, P. Coiffet: Bilateral servo manipulator MA23 in direct mode and via optimized computer control, Proc. 2nd Retote Manned Syst. Technol. Conf. (1977)

    Google Scholar 

  18. A.K. Bejczy: Towards advanced teleoperation in space, Prog. Astronaut. Aeronaut 161, 107–138 (1994)

    Google Scholar 

  19. G. Hirzinger, B. Brunner, J. Dietrich, J. Heindl: Sensor-based space robotics – ROTEX and its telerobotic features, IEEE Trans. Robotics Autom. 9(5), 649–663 (1993)

    Article  Google Scholar 

  20. T.H. Massie, J.K. Salisbury: The phantom haptic interface: A device for probing virtual objects, Proc. ASME Int. Mech. Eng. Congr. Exhib., Chicago (1994) pp. 295–302

    Google Scholar 

  21. P.S. Green, J.W. Hill, J.F. Jensen, A. Shah: Telepresence Surgery, IEEE Eng. Med.Bio. Mag. 14(3), 324–329 (1995)

    Article  Google Scholar 

  22. R.H. Taylor, J. Funda, B. Eldridge, S. Gomory, K. Gruben, D. LaRose, M. Talamini, L. Kavoussi, J. Anderson: A telerobotic assistant for laparoscopic surgery, IEEE Eng. Med.Bio. Mag. 14(3), 279–288 (1995)

    Article  Google Scholar 

  23. A.J. Madhani, G. Niemeyer, J.K. Salisbury: The black falcon: A teleoperated surgical instrument for minimally invasive surgery, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Victoria (1998) pp. 936–944

    Google Scholar 

  24. S. Charles, H. Das, T. Ohm, C. Boswell, G. Rodriguez, R. Steele, D. Istrate: Dexterity-enhanced telerobotic microsurgery, Proc. Int. Conf. Adv. Robotics (1997) pp. 5–10

    Google Scholar 

  25. G.S. Guthart, J.K. Salisbury: The Intuitive${}^{{\texttrademark}}$ telesurgery system: Overview and application, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 618–621

    Google Scholar 

  26. J.M. Sackier, Y. Wang: Robotically assisted laparoscopic surgery: From concept to development, Surg. Endosc. 8(1), 63–66 (1994)

    Article  Google Scholar 

  27. J. Marescaux, J. Leroy, F. Rubino, M. Vix, M. Simone, D. Mutter: Transcontinental robot assisted remote telesurgery: Feasibility and potential applications, Ann. Surg. 235, 487–492 (2002)

    Article  Google Scholar 

  28. G.H. Ballantyne: Robotic surgery, telerobotic surgery, telepresence, and telementoring – Review of early clinical results, Surg. Endosc. 16(10), 1389–1402 (2002)

    Article  Google Scholar 

  29. D.H. Birkett: Electromechanical instruments for endoscopic surgery, Minim. Invasive Ther.Allied Technol. 10(6), 271–274 (2001)

    Article  Google Scholar 

  30. J. Rosen, B. Hannaford: Doc at a distance, IEEE Spectrum 8(10), 34–39 (2006)

    Article  Google Scholar 

  31. A.M. Okamura: Methods for haptic feedback in teleoperated robot-assisted surgery, Ind. Robot 31(6), 499–508 (2004)

    Article  Google Scholar 

  32. T. Ortmaier, B. Deml, B. Kübler, G. Passig, D. Reintsema, U. Seibold: Robot assisted force feedback surgery, Springer Tracts Adv. Robotics 31, 361–379 (2007)

    Article  Google Scholar 

  33. B.M. Yamauchi: PackBot: A versatile platform for military robotics, Proc. SPIE 5422, 228–237 (2004)

    Article  Google Scholar 

  34. R.R. Murphy: Trial by fire [rescue robots], IEEE Robotics Autom. Mag. 11(3), 50–61 (2004)

    Article  Google Scholar 

  35. J. Wright, A. Trebi-Ollennu, F. Hartman, B. Cooper, S. Maxwell, J. Yen, J. Morrison: Driving a rover on mars using the rover sequencing and visualization program, Int. Conf.Instrumentation, ControlInf. Technol. (2005)

    Google Scholar 

  36. G. Hirzinger, K. Landzettel, D. Reintsema, C. Preusche, A. Albu-Schäffer, B. Rebele, M. Turk: ROKVISS – Robotics component verification on ISS, Proc. 8th Int. Symp. Artif. Intell. Robotics Autom. Space (iSAIRAS) (2005), Session2B

    Google Scholar 

  37. C. Preusche, D. Reintsema, K. Landzettel, G. Hirzinger: ROKVISS – Preliminary results for telepresence mode, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 4595–4601

    Google Scholar 

  38. G. Hirzinger, K. Landzettel, B. Brunner, M. Fischer, C. Preusche, D. Reintsema, A. Albu-Schäffer, G. Schreiber, M. Steinmetz: DLR's robotics technologies for on-orbit servicing, Adv. Robotics 18(2), 139–174 (2004)

    Article  Google Scholar 

  39. T.B. Sheridan: Telerobotics, Automation and Human Supervisory Control (MIT Press, Cambridge 1992)

    Google Scholar 

  40. G. Hirzinger, J. Heindl, K. Landzettel, B. Brunner: Multisensory shared autonomy – A key issue in the space robot technology experiment ROTEX, Proc. RSJ/IEEE Int. Conf. Intell. Robots Syst. (IROS) (1992) pp. 221–230

    Google Scholar 

  41. B. Brunner, K. Arbter, G. Hirzinger: Task directed programming of sensor based robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1994) pp. 1080–1087

    Google Scholar 

  42. A.K. Bejczy, W.S. Kim: Predictive displays and shared compliance control for time-delayed telemanipulation, Proc. IEEE/RSJ Int. Workshop Intell. Robots Syst. (IROS) (1990) pp. 407–412

    Google Scholar 

  43. P. Backes, K. Tso: UMI: An interactive supervisory and shared control system for telerobotics, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1990) pp. 1096–1101

    Chapter  Google Scholar 

  44. L. Conway, R. Volz, M. Walker: Tele-autonomous systems: Methods and architectures for intermingling autonomous and telerobotic technology, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 1121–1130

    Google Scholar 

  45. S. Hayati, S.T. Venkataraman: Design and implementation of a robot control system with traded and shared control capability, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 1310–1315

    Google Scholar 

  46. G. Hirzinger, B. Brunner, J. Dietrich, J. Heindl: ROTEX – The first remotely controlled robot in space, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 2604–2611

    Google Scholar 

  47. W.B. Griffin, W.R. Provancher, M.R. Cutkosky: Feedback strategies for telemanipulation with shared control of object handling forces, Presence 14(6), 720–731 (2005)

    Article  Google Scholar 

  48. T. Ortmaier, M. GrÖger, D.H. Boehm, V. Falk, G. Hirzinger: Motion estimation in beating heart surgery, IEEE Trans.Biomed. Eng. 52(10), 1729–1740 (2005)

    Article  Google Scholar 

  49. L. Rosenberg: Virtual fixtures: Perceptual tools for telerobotic manipulation, Proc. IEEE Virtual Real. Int. Symp. (1993) pp. 76–82

    Chapter  Google Scholar 

  50. J.J. Abbott, P. Marayong, A.M. Okamura: Haptic virtual fixtures for robot-assisted manipulation, Proc. 12th Int. Symp. Robotics Res. (2007) pp. 49–64

    Chapter  Google Scholar 

  51. D.J. Lee, P.Y. Li: Passive bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators, IEEE Trans. Robotics 21(5), 936–951 (2005)

    Article  Google Scholar 

  52. M.J. Massimino, T.B. Sheridan, J.B. Roseborough: One handed tracking in six degrees of freedom, Proc. IEEE Int. Conf. Syst. Man Cybern. (1989) pp. 498–503

    Google Scholar 

  53. A. Ruesch, A.Y. Mersha, S. Stramigioli, R. Carloni: Kinetic scrolling-based position mapping for haptic teleoperation of unmanned aerial vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 3116–3121

    Google Scholar 

  54. A. Casals, L. Munoz, J. Amat: Workspace deformation based teleoperation for the increase of movement precision, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 2824–2829

    Google Scholar 

  55. F. Conti, O. Khatib: Spanning large workspaces using small haptic devices, Proc. 1st Jt. Eurohaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst. (2005) pp. 183–188

    Chapter  Google Scholar 

  56. R.W. Daniel, P.R. McAree: Fundamental limits of performance for force reflecting teleoperation, Int. J. Robotics Res. 17(8), 811–830 (1998)

    Article  Google Scholar 

  57. M.J. Massimino, T.B. Sheridan: Sensory substitution for force feedback in teleoperation, Presence Teleoperator Virtual Environ. 2(4), 344–352 (1993)

    Article  Google Scholar 

  58. D.A. Kontarinis, R.D. Howe: Tactile display of vibratory information in teleoperation and virtual environments, Presence Teleoperator Virtual Environ. 4(4), 387–402 (1995)

    Article  Google Scholar 

  59. D.A. Kontarinis, J.S. Son, W.J. Peine, R.D. Howe: A tactile shape sensing and display system for teleoperated manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 641–646

    Google Scholar 

  60. J.J. Gil, A. Avello, Á. Rubio, J. Flórez: Stability analysis of a 1 DOF haptic interface using the Routh–Hurwitz criterion, IEEE Trans. Control Syst. Technol. 12(4), 583–588 (2004)

    Article  Google Scholar 

  61. N. Hogan: Controlling impedance at the man/ machine interface, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 1626–1631

    Google Scholar 

  62. R.J. Adams, B. Hannaford: Stable haptic interaction with virtual environments, IEEE Trans. Robotics Autom. 15(3), 465–474 (1999)

    Article  Google Scholar 

  63. K. Hashtrudi-Zaad, S.E. Salcudean: Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators, Int. J. Robotics Res. 20(6), 419–445 (2001)

    Article  Google Scholar 

  64. Y. Yokokohji, T. Yoshikawa: Bilateral control of master-slave manipulators for ideal kinesthetic coupling – Formulation and experiment, IEEE Trans. Robotics Autom. 10(5), 605–620 (1994)

    Article  Google Scholar 

  65. K.B. Fite, J.E. Speich, M. Goldfarb: Transparency and stability robustness in two-channel bilateral telemanipulation, ASME J. Dyn. Syst. Meas. Control 123(3), 400–407 (2001)

    Article  Google Scholar 

  66. S.E. Salcudean, M. Zhu, W.-H. Zhu, K. Hashtrudi-Zaad: Transparent bilateral teleoperation under position and rate control, Int. J. Robotics Res. 19(12), 1185–1202 (2000)

    Article  Google Scholar 

  67. W.R. Ferrell: Remote manipulation with transmission delay, IEEE Trans. Hum. Factors Electron. 6, 24–32 (1965)

    Article  Google Scholar 

  68. T.B. Sheridan: Space teleoperation through time delay: Review and prognosis, IEEE Trans. Robotics Autom. 9(5), 592–606 (1993)

    Article  MathSciNet  Google Scholar 

  69. A. Eusebi, C. Melchiorri: Force reflecting telemanipulators with time-delay: Stability analysis and control design, IEEE Trans. Robotics Autom. 14(4), 635–640 (1998)

    Article  Google Scholar 

  70. W.S. Kim, B. Hannaford, A.K. Bejczy: Force-reflection and shared compliant control in operating telemanipulators with time delays, IEEE Trans. Robotics Autom. 8(2), 176–185 (1992)

    Article  Google Scholar 

  71. K. Hashtrudi-Zaad, S.E. Salcudean: Transparency in time-delayed systems and the effect of local force feedback for transparent teleoperation, IEEE Trans. Robotics Autom. 18(1), 108–114 (2002)

    Article  MATH  Google Scholar 

  72. R. Oboe, P. Fiorini: A design and control environment for internet-based telerobotics, Int. J. Robotics Res. 17(4), 433–449 (1998)

    Article  Google Scholar 

  73. S. Munir, W.J. Book: Control techniques and programming issues for time delayed internet based teleoperation, ASME J. Dyn. Syst. Meas. Control 125(2), 205–214 (2003)

    Article  Google Scholar 

  74. S. Hirche, M. Buss: Transparent data reduction in networked telepresence and teleaction systems. Part II: Time-delayed communication, Presence Teleoperator Virtual Environ. 16(5), 532–542 (2007)

    Article  Google Scholar 

  75. R.J. Anderson, M.W. Spong: Bilateral control of tele-operators with time delay, IEEE Trans. Autom. Control 34(5), 494–501 (1989)

    Article  Google Scholar 

  76. G. Niemeyer, J.-J.E. Slotine: Telemanipulation with time delays, Int. J. Robotics Res. 23(9), 873–890 (2004)

    Article  Google Scholar 

  77. S. Stramigioli, A. van der Schaft, B. Maschke, C. Melchiorri: Geometric scattering in robotic telemanipulation, IEEE Trans. Robotics Autom. 18(4), 588–596 (2002)

    Article  Google Scholar 

  78. N.A. Tanner, G. Niemeyer: High-frequency acceleration feedback in wave variable telerobotics, IEEE/ASME Trans. Mechatron. 11(2), 119–127 (2006)

    Article  Google Scholar 

  79. S. Munir, W.J. Book: Internet-based teleoperation using wave variables with prediction, IEEE/ASME Trans. Mechatron. 7(2), 124–133 (2002)

    Article  Google Scholar 

  80. D.J. Lee, M.W. Spong: Passive bilateral teleoperation with constant time delay, IEEE Trans. Robotics 22(2), 269–281 (2006)

    Article  Google Scholar 

  81. E. Nuno, L. Basanez, R. Ortega, M.W. Spong: Position tracking for non-linear teleoperators with variable time delay, Int. J. Robotics Res. 28(7), 895–910 (2009)

    Article  Google Scholar 

  82. K. Huang, D.J. Lee: Consensus-based peer-to-peer control architecture for multiuser haptic interaction over the internet, IEEE Trans. Robotics 29(2), 417–431 (2013)

    Article  Google Scholar 

  83. K. Huang, D.J. Lee: Hybrid pd-based control framework for passive bilateral teleoperation over the Internet, Proc. IFAC World Congr. (2011) pp. 1064–1069

    Google Scholar 

  84. B. Hannaford, J.H. Ryu: Time domain passivity control of haptic interfaces, IEEE Trans. Robotics Autom. 18(1), 1–10 (2002)

    Article  Google Scholar 

  85. J.-H. Ryu, C. Preusche, B. Hannaford, G. Hirzinger: Time domain passivity control with reference energy following, IEEE Trans. Control Syst. Technol. 13(5), 737–742 (2005)

    Article  Google Scholar 

  86. J. Artigas, C. Preusche, G. Hirzinger: Time domain passivity-based telepresence with time delay, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 4205–4210

    Google Scholar 

  87. J. Ryu, C. Preusche: Stable bilateral control of teleoperators under time-varying communication delays: Time domain passivity approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 3508–3513

    Google Scholar 

  88. D.J. Lee, K. Huang: Passive-set-position-modulation framework for interactive robotic systems, IEEE Trans. Robotics Autom. 26(2), 354–369 (2010)

    Article  Google Scholar 

  89. J.P. Kim, J. Ryu: Robustly stable haptic interaction control using an energy-bounding algorithm, Int. J. Robotics Res. 29(6), 666–679 (2010)

    Article  Google Scholar 

  90. M.C.J. Franken, S. Stramigioli, S. Misra, S. Secchi, A. Macchelli: Bilateral telemanipulation with time delays: A two-layer approach combining passivity and transparency, IEEE Trans. Robotics 27(4), 741–756 (2011)

    Article  Google Scholar 

  91. V. Duindam, A. Macchelli, S. Stramigioli, H. Bruyninckx: Modeling and Control of Complex Physical Systems (Springer, Berlin, Heidelberg 2009)

    Book  MATH  Google Scholar 

  92. S. Stramigioli: Modeling and IPC Control of Interactive Mechanical Systems: A Coordinate-Free Approach, Lecture Notes in Control and Information Sciences, Vol. 266 (Springer, London 2001)

    MATH  Google Scholar 

  93. S. Stramigioli, C. Secchi, A.J. Van der Schaft, C. Fantuzzi: Sampled Data Systems Passivity and Discrete Port-Hamiltonian Systems, IEEE Trans. Robotics 21(4), 574–587 (2005)

    Article  Google Scholar 

  94. D.J. Lee, O. Martinez-Palafox, M.W. Spong: Bilateral teleoperation of a wheeled mobile robot over delayed communication networks, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 3298–3303

    Google Scholar 

  95. N. Chopra, M.W. Spong, R. Lozano: Synchronization of bilateral teleoperators with time delay, Automatica 44, 2142–2148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  96. J.-J.E. Slotine, W. Li: On the adaptive control of robot manipulators, Int. J. Robotics Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  97. D.J. Lee, D. Xu: Feedback r-passivity of lagrangian systems for mobile robot teleoperation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 2118–2123

    Google Scholar 

  98. S. Stramigioli, R. Mahony, P. Corke: A novel approach to haptic tele-operation of aerial robot vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 5302–5308

    Google Scholar 

  99. D.J. Lee, A. Franchi, H.-I. Son, C. Ha, H.H. Bülthoff, P.R. Giordano: Semi-autonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles, IEEE/ASME Trans. Mech. 18, 1334–1345 (2013)

    Article  Google Scholar 

  100. H.I. Son, A. Franchi, L.L. Chuang, J. Kim, H.H. Bülthoff, P.R. Giordano: Human-centered design and evaluation of haptic cueing for teleoperation of multiple mobile robots, IEEE Trans. Cybern. 43(2), 597–609 (2013)

    Article  Google Scholar 

  101. D.J. Lee, M.W. Spong: Bilateral teleoperation of multiple cooperative robots over delayed communication networks: Theory, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 362–367

    Google Scholar 

  102. P.F. Hokayem, M.W. Spong: Bilateral teleoperation: An historical survey, Automatica 42, 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  103. A. Franchi, C. Secchi, H.I. Son, H.H. Bülthoff, P.R. Giordano: Bilateral teleoperation of groups of mobile robots with time-varying topology, IEEE Trans. Robotics 28(5), 1019–1033 (2012)

    Article  Google Scholar 

  104. G. Hwang, H. Hashimoto: Development of a human-robot-shared controlled teletweezing system, IEEE Trans. Control Sys. Technol. 15(5), 960–966 (2007)

    Article  Google Scholar 

  105. E.J. Rodriguez-Seda, J.J. Troy, C.A. Erignac, P. Murray, D.M. Stipanovic, M.W. Spong: Bilateral teleoperation of multiple mobile agents: Coordinated motion and collision avoidance, IEEE Trans. Control Sys. Technol. 18(4), 984–992 (2010)

    Article  Google Scholar 

  106. D.J. Lee, P.Y. Li: Passive decomposition of multiple mechanical systems under motion coordination requirements, IEEE Trans. Autom. Control 58(1), 230–235 (2013)

    Article  Google Scholar 

  107. P. Malysz, S. Sirouspour: Trilateral teleoperation control of kinematically redundant robotic manipulators, Int. J. Robotics Res. 30(13), 1643–1664 (2011)

    Article  Google Scholar 

  108. B. Khademian, K. Hashtrudi-Zaad: Shared control architectures for haptic training: performance and coupled stability analysis, Int. J. Robotics Res. 30(13), 1627–1642 (2011)

    Article  Google Scholar 

  109. M. Ferre, M. Buss, R. Aracil, C. Melchiorri, C. Balague (Eds.): Advances in Telerobotics, Springer Tracts in Advanced Robotics, Vol. 31 (Springer, Berlin, Heidelberg 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Niemeyer .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Semi-autonomous teleoperation of multiple UAVs: Passing a narrow gap available from http://handbookofrobotics.org/view-chapter/43/videodetails/71

:

Semi-autonomous teleoperation of multiple UAVs: Tumbing over obstacle available from http://handbookofrobotics.org/view-chapter/43/videodetails/72

:

Bilateral teleoperation of multiple quadrotors with time-varying topology available from http://handbookofrobotics.org/view-chapter/43/videodetails/73

:

Passive teleoperation of nonlinear telerobot with tool-dynamics rendering available from http://handbookofrobotics.org/view-chapter/43/videodetails/74

:

Asymmetric teleoperation of dual-arm mobile manipulator available from http://handbookofrobotics.org/view-chapter/43/videodetails/75

:

Tele-existence master–slave system for remote manipulation available from http://handbookofrobotics.org/view-chapter/43/videodetails/297

:

JPL dual-arm telerobot system available from http://handbookofrobotics.org/view-chapter/43/videodetails/298

:

Single and dual arm supervisory and shared control available from http://handbookofrobotics.org/view-chapter/43/videodetails/299

:

Teleoperated humanoid robot – HRP available from http://handbookofrobotics.org/view-chapter/43/videodetails/318

:

Teleoperated humanoid robot – HRP: Tele-driving of lifting vehicle available from http://handbookofrobotics.org/view-chapter/43/videodetails/319

:

Multi-modal multi-user telepresence and teleaction system available from http://handbookofrobotics.org/view-chapter/43/videodetails/321

:

Laparoscopic telesurgery workstation available from http://handbookofrobotics.org/view-chapter/43/videodetails/322

:

Passivity of IPC strategy at 30 Hz sample rate available from http://handbookofrobotics.org/view-chapter/43/videodetails/724

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niemeyer, G., Preusche, C., Stramigioli, S., Lee, D. (2016). Telerobotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics