Advertisement

Haptics

  • Blake HannafordEmail author
  • Allison M. Okamura
Part of the Springer Handbooks book series (SHB)

Abstract

The word haptics, believed to be derived from the Greek word haptesthai, means related to the sense of touch. In the psychology and neuroscience literature, haptics is the study of human touch sensing, specifically via kinesthetic (force/position) and cutaneous (tactile) receptors, associated with perception and manipulation. In the robotics and virtual reality literature, haptics is broadly defined as real and simulated touch interactions between robots, humans, and real, remote, or simulated environments, in various combinations. This chapter focuses on the use of specialized robotic devices and their corresponding control, known as haptic interfaces, that allow human operators to experience the sense of touch in remote (teleoperated) or simulated (virtual) environments.

Keywords

Virtual Environment Collision Detection Virtual Object Haptic Feedback Haptic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
2-D

two-dimensional

3-D

three-dimensional

CAD

computer-aided design

D/A

digital-to-analog

DC

direct current

DOF

degree of freedom

EP

exploratory procedure

FE

finite element

HD

haptic device

HIP

haptic interaction point

HO

human operator

IEEE

Institute of Electrical and Electronics Engineers

IHIP

intermediate haptic interaction point

JND

just noticeable difference

MEMS

microelectromechanical system

NURBS

nonuniform rational B-spline

RC

radio control

ROC

receiver operating curve

SDK

standard development kit

SMA

shape memory alloy

TPaD

tactile pattern display

VE

virtual environment

References

  1. 42.1
    K.B. Shimoga: A survey of perceptual feedback issues in dexterous telemanipulation. I. Finger force feedback, Proc. Virtual Real. Annu. Int. Symp. (1993) pp. 263–270CrossRefGoogle Scholar
  2. 42.2
    M.A. Srinivasan, R.H. LaMotte: Tactile discrimination of shape: responses of slowly and rapidly adapting mechanoreceptive afferents to a step indented into the monkey fingerpad, J. Neurosci. 7(6), 1682–1697 (1987)Google Scholar
  3. 42.3
    R.H. LaMotte, R.F. Friedman, C. Lu, P.S. Khalsa, M.A. Srinivasan: Raised object on a planar surface stroked across the fingerpad: Responses of cutaneous mechanoreceptors to shape and orientation, J. Neurophysiol. 80, 2446–2466 (1998)Google Scholar
  4. 42.4
    R.H. LaMotte, J. Whitehouse: Tactile detection of a dot on a smooth surface: Peripheral neural events, J. Neurophysiol. 56, 1109–1128 (1986)Google Scholar
  5. 42.5
    R. Hayashi, A. Miyake, H. Jijiwa, S. Watanabe: Postureal readjustment to body sway induced by vibration in man, Exp. Brain Res. 43, 217–225 (1981)CrossRefGoogle Scholar
  6. 42.6
    G.M. Goodwin, D.I. McCloskey, P.B.C. Matthews: The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement an the effects of paralysing joint afferents, Brain 95, 705–748 (1972)CrossRefGoogle Scholar
  7. 42.7
    G.S. Dhillon, K.W. Horch: Direct neural sensory feedback and control of a prosthetic arm, IEEE Trans. Neural Syst. Rehabil. Eng. 13(4), 468–472 (2005)CrossRefGoogle Scholar
  8. 42.8
    G.A. Gescheider: Psychophysics: The Fundamentals (Lawrence Erlbaum, Hillsdale 1985)Google Scholar
  9. 42.9
    L.A. Jones: Perception and control of finger forces, Proc. ASME Dyn. Syst. Control Div. (1998) pp. 133–137Google Scholar
  10. 42.10
    R. Klatzky, S. Lederman, V. Metzger: Identifying objects by touch, An `expertt system', Percept. Psychophys. 37(4), 299–302 (1985)CrossRefGoogle Scholar
  11. 42.11
    S. Lederman, R. Klatzky: Hand movements: A window into haptic object recognition, Cogn. Psychol. 19(3), 342–368 (1987)CrossRefGoogle Scholar
  12. 42.12
    S. Lederman, R. Klatzky: Haptic classification of common objects: Knowledge-driven exploration, Cogn. Psychol. 22, 421–459 (1990)CrossRefGoogle Scholar
  13. 42.13
    O.S. Bholat, R.S. Haluck, W.B. Murray, P.G. Gorman, T.M. Krummel: Tactile feedback is present during minimally invasive surgery, J. Am. Coll. Surg. 189(4), 349–355 (1999)CrossRefGoogle Scholar
  14. 42.14
    C. Basdogan, S. De, J. Kim, M. Muniyandi, M.A. Srinivasan: Haptics in minimally invasive surgical simulation and training, IEEE Comput. Graph. Appl. 24(2), 56–64 (2004)CrossRefGoogle Scholar
  15. 42.15
    P. Strom, L. Hedman, L. Sarna, A. Kjellin, T. Wredmark, L. Fellander-Tsai: Early exposure to haptic feedback enhances performance in surgical simulator training: A prospective randomized crossover study in surgical residents, Surg. Endosc. 20(9), 1383–1388 (2006)CrossRefGoogle Scholar
  16. 42.16
    A. Liu, F. Tendick, K. Cleary, C. Kaufmann: A survey of surgical simulation: Applications, technology, and education, Presence Teleop. Virtual Environ. 12(6), 599–614 (2003)CrossRefGoogle Scholar
  17. 42.17
    R.M. Satava: Accomplishments and challenges of surgical simulation, Surg. Endosc. 15(3), 232–241 (2001)CrossRefGoogle Scholar
  18. 42.18
    W.A. McNeely, K.D. Puterbaugh, J.J. Troy: Six degree-of-freedom haptic rendering using voxel sampling, Proc. SIGGRAPH 99 (1999) pp. 401–408CrossRefGoogle Scholar
  19. 42.19
    Geomagic Touch: http://www.geomagic.com
  20. 42.20
    T.H. Massie, J.K. Salisbury: The phantom haptic interface: A device for probing virtual objects, Proc. ASME Dyn. Syst. Contr. Div., Vol. 55 (1994) pp. 295–299Google Scholar
  21. 42.21
    Novint Technologies: http://www.novint.com
  22. 42.22
  23. 42.23
    M.C. Cavusoglu, D. Feygin, F. Tendick: A critical study of the mechanical and electrical properties of the PHANToM haptic interface and improvements for high-performance control, Presence 11(6), 555–568 (2002)CrossRefGoogle Scholar
  24. 42.24
    R.Q. van der Linde, P. Lammerste, E. Frederiksen, B. Ruiter: The HapticMaster, a new high-performance haptic interface, Proc. Eurohaptics Conf. (2002) pp. 1–5Google Scholar
  25. 42.25
    T. Yoshikawa: Manipulability of robotic mechanisms, Int. J. Robotics Res. 4(2), 3–9 (1985)CrossRefGoogle Scholar
  26. 42.26
    J.K. Salibury, J.T. Craig: Articulated hands: Force control and kinematics issues, Int. J. Robotics Res. 1(1), 4–17 (1982)CrossRefGoogle Scholar
  27. 42.27
    P. Buttolo, B. Hannaford: Pen based force display for precision manipulation of virtual environments, Proc. Virtual Reality Annu. International Symposium (VRAIS) (1995) pp. 217–225CrossRefGoogle Scholar
  28. 42.28
    P. Buttolo, B. Hannaford: Advantages of actuation redundancy for the design of haptic displays, Proc. ASME 4th Annu. Symp. Haptic Interfaces Virtual Environ. Teleop. Syst., Vol. 57-2 (1995) pp. 623–630Google Scholar
  29. 42.29
    T. Yoshikawa: Foundations of Robotics (MIT Press, Cambridge 1990)Google Scholar
  30. 42.30
    S. Venema, B. Hannaford: A probabilistic representation of human workspace for use in the design of human interface mechanisms, IEEE Trans. Mechatron. 6(3), 286–294 (2001)CrossRefGoogle Scholar
  31. 42.31
    H. Yano, M. Yoshie, H. Iwata: development of a non-grounded haptic interface using the gyro effect, Proc. 11th Symp. Haptic Interfaces Virtual Environ. Teleop. Syst. (2003) pp. 32–39Google Scholar
  32. 42.32
    C. Swindells, A. Unden, T. Sang: TorqueBAR: an ungrounded haptic feedback device, Proc. 5th Int. Conf. Multimodal Interface (2003) pp. 52–59CrossRefGoogle Scholar
  33. 42.33
    Immersion Corporation: CyberGrasp – Groundbreaking haptic interface for the entire hand, http://www.immersion.com/3d/products/cyber_grasp.php (2006)
  34. 42.34
    C. Richard, M.R. Cutkosky: Contact force perception with an ungrounded haptic interface, Proc. ASME Dyn. Syst. Control Div. (1997) pp. 181–187Google Scholar
  35. 42.35
    J.J. Abbott, A.M. Okamura: Effects of position quantization and sampling rate on virtual-wall passivity, IEEE Trans. Robotics 21(5), 952–964 (2005)CrossRefGoogle Scholar
  36. 42.36
    S. Usui, I. Amidror: Digital low-pass differentiation for biological signal processing, IEEE Trans. Biomed. Eng. 29(10), 686–693 (1982)CrossRefGoogle Scholar
  37. 42.37
    P. Bhatti, B. Hannaford: Single chip optical encoder based velocity measurement system, IEEE Trans. Contr. Syst. Technol. 5(6), 654–661 (1997)CrossRefGoogle Scholar
  38. 42.38
    A.M. Okamura, C. Richard, M.R. Cutkosky: Feeling is believing: Using a force-feedback joystick to teach dynamic systems, ASEE J. Eng. Educ. 92(3), 345–349 (2002)CrossRefGoogle Scholar
  39. 42.39
    C.H. Ho, C. Basdogan, M.A. Srinivasan: Efficient point-based rendering techniques for haptic display of virtual objects, Presence 8, 477–491 (1999)CrossRefGoogle Scholar
  40. 42.40
    C.B. Zilles, J.K. Salisbury: A constraint-based god-object method for haptic display, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1995) pp. 146–151Google Scholar
  41. 42.41
    J.E. Colgate, M.C. Stanley, J.M. Brown: Issues in the haptic display of tool use, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1995) pp. 140–145Google Scholar
  42. 42.42
    D. Ruspini, O. Khatib: Haptic display for human interaction with virtual dynamic environments, J. Robot. Syst. 18(12), 769–783 (2001)zbMATHCrossRefGoogle Scholar
  43. 42.43
    A. Gregory, A. Mascarenhas, S. Ehmann, M. Lin, D. Manocha: Six degree-of-freedom haptic display of polygonal models, Proc. Conf. Vis. 2000 (2000) pp. 139–146Google Scholar
  44. 42.44
    D.E. Johnson, P. Willemsen, E. Cohen: 6-DOF haptic rendering using spatialized normal cone search, Trans. Vis. Comput. Graph. 11(6), 661–670 (2005)CrossRefGoogle Scholar
  45. 42.45
    M.A. Otaduy, M.C. Lin: A modular haptic rendering algorithm for stable and transparent 6-DOF manipulation, IEEE Trans. Vis. Comput. Graph. 22(4), 751–762 (2006)Google Scholar
  46. 42.46
    M.C. Lin, M.A. Otaduy: Sensation-preserving haptic rendering, IEEE Comput. Graph. Appl. 25(4), 8–11 (2005)CrossRefGoogle Scholar
  47. 42.47
    T. Thompson, E. Cohen: Direct haptic rendering of complex trimmed NURBS models, Proc. ASME Dyn. Syst. Control Div. (1999)Google Scholar
  48. 42.48
    S.P. DiMaio, S.E. Salcudean: Needle insertion modeling and simulation, IEEE Trans. Robotics Autom. 19(5), 864–875 (2003)zbMATHCrossRefGoogle Scholar
  49. 42.49
    B. Hannaford: Stability and performance tradeoffs in bi-lateral telemanipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (1989) pp. 1764–1767Google Scholar
  50. 42.50
    B. Gillespie, M. Cutkosky: Stable user-specific rendering of the virtual wall, Proc. ASME Int. Mech. Eng. Cong. Exhib., Vol. 58 (1996) pp. 397–406Google Scholar
  51. 42.51
    R.J. Adams, B. Hannaford: Stable haptic interaction with virtual environments, IEEE Trans. Robotics Autom. 15(3), 465–474 (1999)CrossRefGoogle Scholar
  52. 42.52
    B.E. Miller, J.E. Colgate, R.A. Freeman: Passive implementation for a class of static nonlinear environments in haptic display, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 2937–2942Google Scholar
  53. 42.53
    B.E. Miller, J.E. Colgate, R.A. Freeman: Computational delay and free mode environment design for haptic display, Proc. ASME Dyn. Syst. Cont. Div. (1999)Google Scholar
  54. 42.54
    B.E. Miller, J.E. Colgate, R.A. Freeman: Environment delay in haptic systems, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 2434–2439Google Scholar
  55. 42.55
    S.E. Salcudean, T.D. Vlaar: On the emulation of stiff walls and static friction with a magnetically levitated input/output device, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 119 (1997) pp. 127–132Google Scholar
  56. 42.56
    P. Wellman, R.D. Howe: Towards realistic vibrotactile display in virtual environments, Proc. ASME Dyn. Syst. Control Div. (1995) pp. 713–718Google Scholar
  57. 42.57
    K. MacLean: The haptic camera: A technique for characterizing and playing back haptic properties of real environments, Proc. 5th Annu. Symp. Haptic Interfaces Virtual Environ. Teleop. Syst. (1996)Google Scholar
  58. 42.58
    A.M. Okamura, J.T. Dennerlein, M.R. Cutkosky: Reality-based models for vibration feedback in virtual environments, ASME/IEEE Trans. Mechatron. 6(3), 245–252 (2001)CrossRefGoogle Scholar
  59. 42.59
    K.J. Kuchenbecker, J. Fiene, G. Niemeyer: Improving contact realism through event-based haptic feedback, IEEE Trans. Vis. Comput. Graph. 12(2), 219–230 (2006)CrossRefGoogle Scholar
  60. 42.60
    D.A. Kontarinis, R.D. Howe: Tactile display of vibratory information in teleoperation and virtual environments, Presence 4(4), 387–402 (1995)CrossRefGoogle Scholar
  61. 42.61
    J.T. Dennerlein, P.A. Millman, R.D. Howe: Vibrotactile feedback for industrial telemanipulators, Proc. ASME Dyn. Syst. Contr. Div., Vol. 61 (1997) pp. 189–195Google Scholar
  62. 42.62
    A.M. Okamura, J.T. Dennerlein, R.D. Howe: Vibration feedback models for virtual environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 674–679Google Scholar
  63. 42.63
    R.W. Lindeman, Y. Yanagida, H. Noma, K. Hosaka: Wearable vibrotactile systems for virtual contact and information display, Virtual Real. 9(2-3), 203–213 (2006)CrossRefGoogle Scholar
  64. 42.64
    C. Ho, H.Z. Tan, C. Spence: Using spatial vibrotactile cues to direct visual attention in driving scenes, Transp. Res. F Traffic Psychol. Behav. 8, 397–412 (2005)CrossRefGoogle Scholar
  65. 42.65
    H.Z. Tan, R. Gray, J.J. Young, R. Traylor: A haptic back display for attentional and directional cueing, Haptics-e Electron. J. Haptics Res. 3(1), 20 (2003)Google Scholar
  66. 42.66
    C2 Tactor: Engineering Acoustic Inc.: http://www.eaiinfo.com
  67. 42.67
    W.R. Provancher, M.R. Cutkosky, K.J. Kuchenbecker, G. Niemeyer: Contact location display for haptic perception of curvature and object motion, Int. J. Robotics Res. 24(9), 691–702 (2005)CrossRefGoogle Scholar
  68. 42.68
    R.S. Johansson: Sensory input and control of grip, Novartis Foundat. Symp., Vol. 218 (1998) pp. 45–59Google Scholar
  69. 42.69
    K.O. Johnson, J.R. Phillips: A rotating drum stimulator for scanned embossed patterns and textures across the skin, J. Neurosci. Methods 22, 221–231 (1998)CrossRefGoogle Scholar
  70. 42.70
    M.A. Salada, J.E. Colgate, P.M. Vishton, E. Frankel: Two experiments on the perception of slip at the fingertip, Proc. 12th Symp. Haptic Interfaces Virtual Environ. Teleop. Syst. (2004) pp. 472–476Google Scholar
  71. 42.71
    R.J. Webster III, T.E. Murphy, L.N. Verner, A.M. Okamura: A novel two-dimensional tactile slip display: Design, kinematics and perceptual experiment, ACM Trans. Appl. Percept. 2(2), 150–165 (2005)CrossRefGoogle Scholar
  72. 42.72
    N.G. Tsagarakis, T. Horne, D.G. Caldwell: SLIP AESTHEASIS: A portable 2D slip/skin stretch display for the fingertip, 1st Jt. Eurohaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleop. Syst. (World Haptics) (2005) pp. 214–219CrossRefGoogle Scholar
  73. 42.73
    J. Biggs, M. Srinivasan: Tangential versus normal displacements of skin: Relative effectiveness for producing tactile sensations, Proc. 10th Symp. Haptic Interfaces Virtual Environ. Teleop. Syst. (2002) pp. 121–128Google Scholar
  74. 42.74
    V. Hayward, J.M. Cruz-Hernandez: Tactile display device using distributed lateral skin stretch, Proc. 8th Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst. (2000) pp. 1309–1314Google Scholar
  75. 42.75
    B. Gleeson, S. Horschel, W. Provancher: Perception of direction for applied tangential skin displacement: Effects of speed, displacement, and repetition, IEEE Trans. Haptics 3(3), 177–188 (2010)CrossRefGoogle Scholar
  76. 42.76
    W.R. Provancher, N.D. Sylvester: Fingerpad skin stretch increases the perception of virtual friction, IEEE Trans. Haptics 2(4), 212–223 (2009)CrossRefGoogle Scholar
  77. 42.77
    Z.F. Quek, S.B. Schorr, I. Nisky, W.R. Provancher, A.M. Okamura: Sensory substitution using 3-degree-of-freedom tangential and normal skin deformation feedback, IEEE Haptics Symp. (2014) pp. 27–33Google Scholar
  78. 42.78
    A. Tirmizi, C. Pacchierottie, D. Prattichizzo: On the role of cutaneous force in teleoperation: Subtracting kinesthesia from complete haptic feedback, IEEE World Haptics Conf. (2013) pp. 371–376Google Scholar
  79. 42.79
    K. Bark, J. Wheeler, P. Shull, J. Savall, M. Cutkosky: Rotational skin stretch feedback: A wearable haptic display for motion, IEEE Trans. Haptics 3(3), 166–176 (2010)CrossRefGoogle Scholar
  80. 42.80
    P.B. Shull, K.L. Lurie, M.R. Cutkosky, T.F. Besier: Training multi-parameter gaits to reduce the knee adduction moment with data-driven models and haptic feedback, J. Biomech. 44(8), 1605–1609 (2011)CrossRefGoogle Scholar
  81. 42.81
    K.O. Johnson, J.R. Phillips: Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition, J. Neurophysiol. 46(6), 1177–1192 (1981)Google Scholar
  82. 42.82
    N. Asamura, T. Shinohara, Y. Tojo, N. Koshida, H. Shinoda: Necessary spatial resolution for realistic tactile feeling display, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 1851–1856Google Scholar
  83. 42.83
    G. Moy, U. Singh, E. Tan, R.S. Fearing: Human psychophysics for teletaction system design, Haptics-e Electron. J. Haptics Res. 1, 3 (2000)Google Scholar
  84. 42.84
    W.J. Peine, R.D. Howe: Do humans sense finger deformation or distributed pressure to detect lumps in soft tissue, Proc. ASME Dyn. Syst. Contr. Div., Vol. 64 (1998) pp. 273–278Google Scholar
  85. 42.85
    K.B. Shimoga: A survey of perceptual feedback issues in dexterous telemanipulation: Part II, Finger touch feedback, Proc. IEEE Virtual Real. Annu. Int. Symp. (1993) pp. 271–279CrossRefGoogle Scholar
  86. 42.86
    K.A. Kaczmarek, P. Bach-Y-Rita: Tactile displays. In: Virtual Environments and Advanced Interface Design, ed. by W. Barfield, T.A. Furness (Oxford Univ. Press, Oxford 1995) pp. 349–414Google Scholar
  87. 42.87
    M. Shimojo: Tactile sensing and display, Trans. Inst. Electr. Eng. Jpn. E 122, 465–468 (2002)Google Scholar
  88. 42.88
    S. Tachi: Roles of tactile display in virtual reality, Trans. Inst. Electr. Eng. Jpn. E 122, 461–464 (2002)Google Scholar
  89. 42.89
    P. Kammermeier, G. Schmidt: Application-specific evaluation of tactile array displays for the human fingertip. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) 2002)Google Scholar
  90. 42.90
    S.A. Wall, S. Brewster: Sensory substitution using tactile pin arrays: Human factors, technology and applications, Signal Process. 86(12), 3674–3695 (2006)zbMATHCrossRefGoogle Scholar
  91. 42.91
    J.H. Killebrew, S.J. Bensmaia, J.F. Dammann, P. Denchev, S.S. Hsiao, J.C. Craig, K.O. Johnson: A dense array stimulator to generate arbitrary spatio-temporal tactile stimuli, J. Neurosci. Methods 161(1), 62–74 (2007)CrossRefGoogle Scholar
  92. 42.92
    C.R. Wagner, S.J. Lederman, R.D. Howe: Design and performance of a tactile shape display using RC servomotors, Haptics-e Electron. J. Haptics Res. 3, 4 (2004)Google Scholar
  93. 42.93
    R.D. Howe, W.J. Peine, D.A. Kontarinis, J.S. Son: Remote palpation technology, IEEE Eng. Med. Biol. 14(3), 318–323 (1995)CrossRefGoogle Scholar
  94. 42.94
    P.S. Wellman, W.J. Peine, G. Favalora, R.D. Howe: Mechanical design and control of a high-bandwidth shape memory alloy tactile display, Lect. Notes Comput. Sci. 232, 56–66 (1998)zbMATHGoogle Scholar
  95. 42.95
    V. Hayward, M. Cruz-Hernandez: Tactile display device using distributed lateral skin stretch, Haptic Interfaces Virtual Environ. Teleop. Syst. Symp., Vol. 69-2 (2000) pp. 1309–1314Google Scholar
  96. 42.96
    Q. Wang, V. Hayward: Compact, portable, modular, high-performance, distributed tactile transducer device based on lateral skin deformation, Haptic Interfaces Virtual Environ. Teleop. Syst. Symp. (2006) pp. 67–72Google Scholar
  97. 42.97
    Q. Wang, V. Hayward: In vivo biomechanics of the fingerpad skin under local tangential traction, J. Biomech. 40(4), 851–860 (2007)CrossRefGoogle Scholar
  98. 42.98
    V. Levesque, J. Pasquero, V. Hayward: Braille display by lateral skin deformation with the STReSS2 tactile transducer, 2nd Jt. Eurohaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleop. Syst. (World Haptics) (2007) pp. 115–120CrossRefGoogle Scholar
  99. 42.99
    K. Drewing, M. Fritschi, R. Zopf, M.O. Ernst, M. Buss: First evaluation of a novel tactile display exerting shear force via lateral displacement, ACM Trans. Appl. Percept. 2(2), 118–131 (2005)CrossRefGoogle Scholar
  100. 42.100
    K.A. Kaczmarek, J.G. Webster, P. Bach-Y-Rita, W.J. Tompkins: Electrotactile and vibrotactile displays for sensory substitution systems, IEEE Trans. Biomed. Eng. 38, 1–16 (1991)CrossRefGoogle Scholar
  101. 42.101
    N. Asamura, N. Yokoyama, H. Shinoda: Selectively stimulating skin receptors for tactile display, IEEE Comput. Graph. Appl. 18, 32–37 (1998)CrossRefGoogle Scholar
  102. 42.102
    L. Winfield, J. Glassmire, J.E. Colgate, M. Peshkin: T-PaD: Tactile pattern display through variable friction reduction, 2nd Jt. Eurohaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleop. Syst. (World Haptics) (2007) pp. 421–426CrossRefGoogle Scholar
  103. 42.103
    J. Mullenbach, D. Johnson, J.E. Colgate, M.A. Peshkin: ActivePaD surface haptic device, IEEE Haptics Symp. (2012) pp. 407–414Google Scholar
  104. 42.104
    O. Bau, I. Poupyrev, A. Israr, C. Harrison: TeslaTouch: Electrovibration for touch surfaces, Proc. 23nd Annu. ACM Symp. User Interface Softw. Technol. (2012) pp. 283–292Google Scholar
  105. 42.105
    D.J. Meyer, M.A. Peshkin, J.E. Colgate: Fingertip friction modulation due to electrostatic attraction, IEEE World Haptics Conf. (2013)Google Scholar
  106. 42.106
    H.-N. Ho, L.A. Jones: Contribution of thermal cues to material discrimination and localization, Percept. Psychophys. 68, 118–128 (2006)CrossRefGoogle Scholar
  107. 42.107
    H.-N. Ho, L.A. Jones: Development and evaluation of a thermal display for material identification and discrimination, ACM Trans. Appl. Percept. 4(2), 118–128 (2007)CrossRefGoogle Scholar
  108. 42.108
    D.G. Caldwell, C. Gosney: Enhanced tactile feedback (tele-taction) using a multi-functional sensory system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1993) pp. 955–960CrossRefGoogle Scholar
  109. 42.109
    D.G. Caldwell, S. Lawther, A. Wardle: Tactile perception and its application to the design of multi-modal cutaneous feedback systems, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 3215–3221CrossRefGoogle Scholar
  110. 42.110
    C.G. Burdea: Force and Touch Feedback for Virtual Reality (Wiley, New York 1996)Google Scholar
  111. 42.111
    M.C. Lin, M.A. Otaduy (Eds.): Haptic Rendering: Foundations, Algorithms, and Applications (AK Peters, Wellesley 2008)Google Scholar
  112. 42.112
    V. Hayward, K.E. MacLean: Do it yourself haptics, Part I, IEEE Robotics Autom. Mag. 14(4), 88–104 (2007)CrossRefGoogle Scholar
  113. 42.113
    K.E. MacLean, V. Hayward: Do It Yourself Haptics, Part II, IEEE Robotics Autom. Mag. 15(1), 104–119 (2008)CrossRefGoogle Scholar
  114. 42.114
    V. Hayward, O.R. Astley, M. Cruz-Hernandez, D. Grant, G. Robles-De-La-Torre: Haptic interfaces and devices, Sensor Rev. 24(1), 16–29 (2004)CrossRefGoogle Scholar
  115. 42.115
    K. Salisbury, F. Conti, F. Barbagli: Haptic rendering: Introductory concepts, IEEE Comput. Graph. Appl. 24(2), 24–32 (2004)CrossRefGoogle Scholar
  116. 42.116
    V. Hayward, K.E. MacLean: A brief taxonomy of tactile illusions and demonstrations that can be done in a hardware store, Brain Res. Bull. 75(6), 742–752 (2007)CrossRefGoogle Scholar
  117. 42.117
    G. Robles-De-La-Torre: The importance of the sense of touch in virtual and real environments, IEEE Multimedia 13(3), 24–30 (2006)CrossRefGoogle Scholar
  118. 42.118
    Haptics-e: The Electronic Journal of Haptics Research, http://www.haptics-e.org
  119. 42.119
    Haptics Technical Committee: http://www.worldhaptics.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations