Skip to main content

Mechanism and Actuation

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter focuses on the principles that guide the design and construction of robotic systems. The kinematics equations and Jacobian of the robot characterize its range of motion and mechanical advantage, and guide the selection of its size and joint arrangement. The tasks a robot is to perform and the associated precision of its movement determine detailed features such as mechanical structure, transmission, and actuator selection. Here we discuss in detail both the mathematical tools and practical considerations that guide the design of mechanisms and actuation for a robot system.

The following sections (Sect. 4.1) discuss characteristics of the mechanisms and actuation that affect the performance of a robot. Sections 4.24.6 discuss the basic features of a robot manipulator and their relationship to the mathematical model that is used to characterize its performance. Sections 4.7 and 4.8 focus on the details of the structure and actuation of the robot and how they combine to yield various types of robots. The final Sect. 4.9 relates these design features to various performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating current

ASV:

adaptive suspension vehicle

DC:

direct current

DOF:

degree of freedom

EAP:

electroactive polymer

emf:

electromotive force

MEMS:

microelectromechanical system

MTBF:

mean time between failures

NASA:

National Aeronautics and Space Agency

NEO:

neodymium

PM:

permanent magnet

RV:

rotary vector

SEA:

series elastic actuator

SMA:

shape memory alloy

VR:

variable reluctance

References

  1. D.T. Greenwood: Classical Dynamics (Prentice Hall, Upper Saddle River 1977)

    Google Scholar 

  2. F.C. Moon: Applied Dynamics (Wiley, New York 1998)

    Book  MATH  Google Scholar 

  3. S.-M. Song, K.J. Waldron: Machines that Walk: The Adaptive Suspension Vehicle (MIT Press, Cambridge 1988)

    Google Scholar 

  4. M.T. Mason, J.K. Salisbury: Robot Hands and the Mechanics of Manipulation (MIT Press, Cambridge 1985)

    Google Scholar 

  5. R.P. Paul: Robot Manipulators: Mathematics, Programming, and Control (MIT Press, Cambridge 1981)

    Google Scholar 

  6. J.J. Craig: Introduction to Robotics: Mechanics and Control (Addison-Wesley, Reading 1989)

    MATH  Google Scholar 

  7. O. Bottema, B. Roth: Theoretical Kinematics (North-Holland, Amsterdam 1979)

    MATH  Google Scholar 

  8. J.M. McCarthy: An Introduction to Theoretical Kinematics (MIT Press, Cambridge 2013)

    Google Scholar 

  9. L.W. Tsai: Robot Analysis. The Mechanics of Serial and Parallel Manipulators (Wiley, New York 1999)

    Google Scholar 

  10. T. Lozano-Perez: Spatial Planning: A configuration space approach, IEEE Trans. Comput. 32(2), 108–120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.C. Latombe: Robot Motion Planning (Kluwer, Boston 1991)

    Book  MATH  Google Scholar 

  12. R. Vijaykumar, K. Waldron, M.J. Tsai: Geometric optimization of manipulator structures for working volume and dexterity. In: Kinematics of Robot Manipulators, ed. by J.M. McCarthy (MIT Press, Cambridge 1987) pp. 99–111

    Google Scholar 

  13. K. Gupta: On the nature of robot workspace. In: Kinematics of Robot Manipulators, ed. by J.M. McCarthy (MIT Press, Cambridge 1987) pp. 120–129

    Google Scholar 

  14. I. Chen, J. Burdick: Determining task optimal modular robot assembly configurations, Proc. IEEE Robotics Autom. Conf. (1995) pp. 132–137

    Google Scholar 

  15. P. Chedmail, E. Ramstei: Robot mechanisms synthesis and genetic algorithms, Proc. IEEE Robotics Autom. Conf. (1996) pp. 3466–3471

    Google Scholar 

  16. P. Chedmail: Optimization of multi-DOF mechanisms. In: Computational Methods in Mechanical Systems, ed. by J. Angeles, E. Zakhariev (Springer, Berlin, Heidlberg 1998) pp. 97–129

    Chapter  Google Scholar 

  17. C. Leger, J. Bares: Automated Synthesis and Optimization of Robot Configurations, Proc. ASME Design Tech. Conf., Atlanta (1998), paper no. DETC98/Mech-5945 CD-ROM

    Google Scholar 

  18. F.C. Park: Distance metrics on the rigid body motions with applications to mechanism design, ASME J. Mech. Des. 117(1), 48–54 (1995)

    Article  Google Scholar 

  19. J.M.R. Martinez, J. Duffy: On the metrics of rigid body displacements for infinite and finite bodies, ASME J. Mech. Des. 117(1), 41–47 (1995)

    Article  Google Scholar 

  20. M. Zefran, V. Kumar, C. Croke: Choice of Riemannian metrics for rigid body kinematics, Proc. ASME Design Tech. Conf., Irvine (1996), paper no. DETC96/Mech-1148

    Google Scholar 

  21. Q. Lin, J.W. Burdick: On well-defined kinematic metric functions, Proc. Int. Conf. Robotics Autom., San Francisco (2000) pp. 170–177

    Google Scholar 

  22. C. Gosseli: On the design of efficient parallel mechanisms. In: Computational Methods in Mechanical Systems, ed. by J. Angeles, E. Zakhariev (Springer, Berlin, Heidelberg 1998) pp. 68–96

    Chapter  Google Scholar 

  23. J.V. Albro, G.A. Sohl, J.E. Bobrow, F. Park: On the computation of optimal high-dives, Proc. Int. Conf. Robotics Autom., San Francisco (2000) pp. 3959–3964

    Google Scholar 

  24. G.E. Shilov: An Introduction to the Theory of Linear Spaces (Dover, New York 1974)

    MATH  Google Scholar 

  25. J.K. Salisbury, J.J. Craig: Articulated hands: Force control and kinematic issues, Int. J. Robotics Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  26. J. Angeles, C.S. Lopez-Cajun: Kinematic isotropy and the conditioning index of serial manipulators, Int. J. Robotics Res. 11(6), 560–571 (1992)

    Article  Google Scholar 

  27. J. Angeles, D. Chabla: On isotropic sets of points in the plane. Application to the design of robot architectures. In: Advances in Robot Kinematics, ed. by J. Lenarčič, M.M. Stanišić (Kluwer, Boston 2000) pp. 73–82

    Chapter  Google Scholar 

  28. E.F. Fichter: A Stewart platform-based manipulator: General theory and practical construction. In: Kinematics of Robot Manipulators, ed. by J.M. McCarthy (MIT Press, Cambridge 1987) pp. 165–190

    Google Scholar 

  29. J.P. Merlet: Parallel Robots (Kluwer, Boston 1999)

    MATH  Google Scholar 

  30. J.M. Hervé: Analyse structurelle des méchanismes par groupe des déplacements, Mech. Mach. Theory 13(4), 437–450 (1978)

    Article  Google Scholar 

  31. J.M. Hervé: The Lie group of rigid body displacements, a fundamental tool for mechanism design, Mech. Mach. Theory 34, 719–730 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. A.P. Murray, F. Pierrot, P. Dauchez, J.M. McCarthy: A planar quaternion approach to the kinematic synthesis of a parallel manipulator, Robotica 15(4), 361–365 (1997)

    Article  Google Scholar 

  33. A. Murray, M. Hanchak: Kinematic synthesis of planar platforms with RPR, PRR, and RRR chains. In: Advances in Robot Kinematics, ed. by J. Lenarčič, M.M. Stanišić (Kluwer, Boston 2000) pp. 119–126

    Chapter  Google Scholar 

  34. J.M. McCarthy, G.S. Soh: Geometric Design of Linkages, 2nd edn. (Springer, Berlin, Heidelberg 2010)

    MATH  Google Scholar 

  35. V. Kumar: Instantaneous kinematics of parallel-chain robotic mechanisms, J. Mech. Des. 114(3), 349–358 (1992)

    Article  Google Scholar 

  36. C. Gosselin, J. Angeles: The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator, ASME J. Mech. Transmiss. Autom. Des. 110(3), 35–41 (1988)

    Article  Google Scholar 

  37. J. Lee, J. Duffy, M. Keler: The optimum quality index for the stability of in-parallel planar platform devices, Proc. ASME Design Eng. Tech. Conf., Irvine (1996), paper no. 96-DETC/MECH-1135

    Google Scholar 

  38. J. Lee, J. Duffy, K. Hunt: A practical quality index based on the octahedral manipulator, Int. J. Robotics Res. 17(10), 1081–1090 (1998)

    Article  Google Scholar 

  39. S.E. Salcudean, L. Stocco: Isotropy and actuator optimization in haptic interface design, Proc. Int. Conf. Robotics Autom., San Francisco (2000) pp. 763–769

    Google Scholar 

  40. L.-W. Tsai, S. Joshi: Kinematics and optimization of a spatial 3-UPU parallel manipulator, J. Mech. Des. 122, 439–446 (2000)

    Article  Google Scholar 

  41. Q. Jin, T.-L. Yang: Theory for topology synthesis of parallel manipulators and its application to three-dimension-translation parallel manipulators, J. Mech. Des. 126(3), 625–639 (2004)

    Article  Google Scholar 

  42. X. Kong, C.M. Gosselin: Type synthesis of three-degree-of-freedom spherical parallel manipulators, Int. J. Robotics Res. 23, 237–245 (2004)

    Article  Google Scholar 

  43. T.A. Hess-Coelho: Topological synthesis of a parallel wrist mechanism, J. Mech. Des. 128(1), 230–235 (2006)

    Article  Google Scholar 

  44. E.I. Rivin: Mechanical Design of Robots (McGraw-Hill, New York 1988) p. 368

    Google Scholar 

  45. R.C. Juvinall, K.M. Marshek: Fundamentals of Machine Component Design, 4th edn. (Wiley, New York 2005) p. 832

    Google Scholar 

  46. J.E. Shigley, C.R. Mischke: Mechanical Engineering Design, 7th edn. (McGraw-Hill, New York 2004) p. 1056

    Google Scholar 

  47. J.E. Shigley, C.R. Mischke: Standard Handbook of Machine Design, 2nd edn. (McGraw-Hill, New York 1996) p. 1700

    Google Scholar 

  48. N. Sclater, N. Chironis: Mechanisms and Mechanical Devices Sourcebook, 4th edn. (McGraw Hill, New York 2007) p. 512

    Google Scholar 

  49. Intuitive Surgical EndoWrist Insturments, http://www.intuitivesurgical.com/products/instruments/

  50. J.P. Trevelyan: Sensing and control for shearing robots, IEEE Trans. Robotics Autom. 5(6), 716–727 (1989)

    Article  Google Scholar 

  51. J.P. Trevelyan, P.D. Kovesi, M. Ong, D. Elford: ET: A wrist mechanism without singular positions, Int. J. Robotics Res. 4(4), 71–85 (1986)

    Article  Google Scholar 

  52. C. de Silva: Sensors and Actuators: Control Systems Instrumentation (CRC, Boca Raton 2007)

    Book  Google Scholar 

  53. J. Hollerbach, I. Hunter, J. Ballantyne: A Comparative analysis of actuator technologies for robotics, Robotics Rev. 2, 299–342 (1992)

    Google Scholar 

  54. Boston Dynamics, Waltham, MA, USA: Big Dog Robot, http://www.bostondynamics.com/robot_bigdog.html

  55. Raytheon, Waltham MA, USA: Sarcos Exoskeleton, http://www.popsci.com/category/tags/raytheon-sarcos-xos

  56. International Submarine Engineering, Port Coquitlam, BC, Canada: Magnum 7, http://www.ise.bc.ca/manips.html

  57. Shadow Robot Company, London, UK: Air muscles and pneumatic hands,http://www.shadowrobot.com/tag/muscle-hand

  58. Johns Hopkins, Baltimore, USA: Pneumatic Stepper Motor and MrBot,http://urobotics.urology.jhu.edu/projects/PneuStep

  59. The Baxter Robot Rethink Robotics,http://www.rethinkrobotics.com/products/baxter/

  60. Singapore Institute for Neurotechnology, NeuroRehabilitation Laboratory: http://www.sinapseinstitute.org/projects/neurorehabilitation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Scheinman .

Editor information

Editors and Affiliations

Video-References

Video-References

:

A parallel robot available from http://handbookofrobotics.org/view-chapter/04/videodetails/640

:

Three-fingered robot hand available from http://handbookofrobotics.org/view-chapter/04/videodetails/642

:

Robotics milking system available from http://handbookofrobotics.org/view-chapter/04/videodetails/643

:

SCARA robots available from http://handbookofrobotics.org/view-chapter/04/videodetails/644

:

Big Dog –Applications of hydraulic actuators available from http://handbookofrobotics.org/view-chapter/04/videodetails/645

:

Raytheon Sarcos exoskeleton available from http://handbookofrobotics.org/view-chapter/04/videodetails/646

:

PI piezo hexapod available from http://handbookofrobotics.org/view-chapter/04/videodetails/648

:

Harmonic drive available from http://handbookofrobotics.org/view-chapter/04/videodetails/649

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheinman, V., McCarthy, J.M., Song, JB. (2016). Mechanism and Actuation. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics