Grasping

• Domenico Prattichizzo
• Jeffrey C. Trinkle
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

This chapter introduces fundamental models of grasp analysis. The overall model is a coupling of models that define contact behavior with widely used models of rigid-body kinematics and dynamics. The contact model essentially boils down to the selection of components of contact force and moment that are transmitted through each contact. Mathematical properties of the complete model naturally give rise to five primary grasp types whose physical interpretations provide insight for grasp and manipulation planning.

After introducing the basic models and types of grasps, this chapter focuses on the most important grasp characteristic: complete restraint. A grasp with complete restraint prevents loss of contact and thus is very secure. Two primary restraint properties are form closure and force closure. A form closure grasp guarantees maintenance of contact as long as the links of the hand and the object are well-approximated as rigid and as long as the joint actuators are sufficiently strong. As will be seen, the primary difference between form closure and force closure grasps is the latter’s reliance on contact friction. This translates into requiring fewer contacts to achieve force closure than form closure.

The goal of this chapter is to give a thorough understanding of the all-important grasp properties of form and force closure. This will be done through detailed derivations of grasp models and discussions of illustrative examples. For an in-depth historical perspective and a treasure-trove bibliography of papers addressing a wide range of topics in grasping, the reader is referred to [38.1].

3-D

three-dimensional

DH

Denavit–Hartenberg

DLR

Deutsches Zentrum für Luft- und Raumfahrt

DOF

degree of freedom

HF

hard finger

LP

linear program

PwoF

point-contact-without-friction

SF

soft finger

References

1. 38.1
A. Bicchi: Hands for dextrous manipulation and powerful grasping: A difficult road towards simplicity, IEEE Trans. Robotics Autom. 16, 652–662 (2000)
2. 38.2
J.K. Salisbury: Kinematic and Force Analysis of Articulated Hands, Ph.D. Thesis (Stanford University, Stanford 1982)Google Scholar
3. 38.3
A.T. Miller, P.K. Allen: GraspIt! A versatile simulator for robotic grasping, IEEE Robotics Autom. Mag. 11(4), 110–122 (2004)
4. 38.4
M. Malvezzi, G. Gioioso, G. Salvietti, D. Prattichizzo: SynGrasp: A matlab toolbox for underactuated and compliant hands, IEEE Robotics Autom. Mag. 22(4), 52–68 (2015)
5. 38.5
M. Malvezzi, G. Gioioso, G. Salvietti, D. Prattichizzo, A. Bicchi: Syngrasp: A matlab toolbox for grasp analysis of human and robotic hands, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 1088–1093Google Scholar
6. 38.6
SynGrasp: A MATLAB Toolbox for Grasp Analysis of Human and Robotic Hands, http://syngrasp.dii.unisi.it/
7. 38.7
M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hoppner, S. Jorg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimbock, S. Wolf, T. Wusthoff, G. Hirzinger: The DLR hand arm system, IEEE Conf. Robotics Autom. (2011) pp. 3175–3182Google Scholar
8. 38.8
K. Salisbury, W. Townsend, B. Ebrman, D. DiPietro: Preliminary design of a whole-arm manipulation system (WAMS), Proc. IEEE Int. Conf. Robotics Autom. (1988) pp. 254–260Google Scholar
9. 38.9
M.S. Ohwovoriole, B. Roth: An extension of screw theory, J. Mech. Des. 103, 725–735 (1981)
10. 38.10
K.H. Hunt: Kinematic Geometry of Mechanisms (Oxford Univ. Press, Oxford 1978)
11. 38.11
T.R. Kane, D.A. Levinson, P.W. Likins: Spacecraft Dynamics (McGraw Hill, New York 1980)Google Scholar
12. 38.12
J.J. Craig: Introduction to Robotics: Mechanics and Control, 2nd edn. (Addison-Wesley, Reading 1989)
13. 38.13
J.K. Salisbury, B. Roth: Kinematic and force analysis of articulated mechanical hands, J. Mech. Transm. Autom. Des. 105(1), 35–41 (1983)
14. 38.14
M.T. Mason, J.K. Salisbury Jr: Robot Hands and the Mechanics of Manipulation (MIT Press, Cambridge 1985)Google Scholar
15. 38.15
A. Bicchi: On the closure properties of robotic grasping, Int. J. Robotics Res. 14(4), 319–334 (1995)
16. 38.16
D. Prattichizzo, A. Bicchi: Consistent task specification for manipulation systems with general kinematics, ASME J. Dyn. Syst. Meas. Control 119(4), 760–767 (1997)
17. 38.17
J. Kerr, B. Roth: Analysis of multifingered hands, Int. J. Robotics Res. 4(4), 3–17 (1986)
18. 38.18
G. Strang: Introduction to Linear Algebra (Wellesley-Cambridge Press, Wellesley 1993)
19. 38.19
R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robot Manipulation (CRC, Boca Raton 1993)Google Scholar
20. 38.20
D. Prattichizzo, A. Bicchi: Dynamic analysis of mobility and graspability of general manipulation systems, IEEE Trans. Robotics Autom. 14(2), 241–258 (1998)
21. 38.21
A. Bicchi: On the problem of decomposing grasp and manipulation forces in multiple whole-limb manipulation, Int. J. Robotics Auton. Syst. 13, 127–147 (1994)
22. 38.22
A.M. Dollar, R.D. Howe: Joint coupling and actuation design of underactuated hands for unstructured environments, Int. J. Robotics Res. 30, 1157–1169 (2011)
23. 38.23
L. Birglen, T. Lalibertè, C. Gosselin: Underactuated robotic hands, Springer Tracts in Advanced Robotics (Springer, Berlin, Heidelberg 2008)
24. 38.24
M.G. Catalano, G. Grioli, A. Serio, E. Farnioli, C. Piazza, A. Bicchi: Adaptive synergies for a humanoid robot hand, Proc. IEEE-RAS Int. Conf. Humanoid Robots (2012) pp. 7–14Google Scholar
25. 38.25
M. Gabiccini, A. Bicchi, D. Prattichizzo, M. Malvezzi: On the role of hand synergies in the optimal choice of grasping forces, Auton. Robots 31, 235–252 (2011)
26. 38.26
M. Malvezzi, D. Prattichizzo: Evaluation of grasp stiffness in underactuated compliant hands, Proc. IEEE Int. Conf. Robotics Autom. (2013) pp. 2074–2079Google Scholar
27. 38.27
S.F. Chen, I. Kao: Conservative congruence transformation for joint and cartesian stiffness matrices of robotic hands and fingers, Int. J. Robotics Res. 19(9), 835–847 (2000)
28. 38.28
M.R. Cutkosky, I. Kao: Computing and controlling the compliance of a robotic hand, IEEE Trans. Robotics Autom. 5(2), 151–165 (1989)
29. 38.29
A. Albu-Schaffer, O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. Wimbock, S. Wolf, G. Hirzinger: Soft robotics, IEEE Robotics Autom, Mag. 15(3), 20–30 (2008)Google Scholar
30. 38.30
A. Bicchi: Force distribution in multiple whole-limb manipulation, Proc. IEEE Int. Conf. Robotics Autom. (1993)Google Scholar
31. 38.31
F. Reuleaux: The Kinematics of Machinery (Macmillan, New York 1876), Republished by Dover, New York, 1963Google Scholar
32. 38.32
T. Omata, K. Nagata: Rigid body analysis of the indeterminate grasp force in power grasps, IEEE Trans. Robotics Autom. 16(1), 46–54 (2000)
33. 38.33
J.C. Trinkle: The Mechanics and Planning of Enveloping Grasps, Ph.D. Thesis (University of Pennsylvania, Department of Systems Engineering, 1987)Google Scholar
34. 38.34
K. Lakshminarayana: Mechanics of Form Closure, Tech. Rep., Vol. 78-DET-32 (ASME, New York 1978)Google Scholar
35. 38.35
E. Rimon, J. Burdick: Mobility of bodies in contact i: A 2nd order mobility index for multiple-finger grasps, IEEE Trans. Robotics Autom. 14(5), 696–708 (1998)
36. 38.36
B. Mishra, J.T. Schwartz, M. Sharir: On the existence and synthesis of multifinger positive grips, Algorithmica 2(4), 541–558 (1987)
37. 38.37
P. Somov: Über Schraubengeschwindigkeiten eines festen Körpers bei verschiedener Zahl von Stützflächen, Z. Math. Phys. 42, 133–153 (1897)Google Scholar
38. 38.38
P. Somov: Über Schraubengeschwindigkeiten eines festen Körpers bei verschiedener Zahl von Stützflächen, Z. Math. Phys. 42, 161–182 (1897)Google Scholar
39. 38.39
A.J. Goldman, A.W. Tucker: Polyhedral convex cones. In: Linear Inequalities and Related Systems, ed. by H.W. Kuhn, A.W. Tucker (Princeton Univ., York 1956) pp. 19–40Google Scholar
40. 38.40
X. Markenscoff, L. Ni, C.H. Papadimitriou: The geometry of grasping, Int. J. Robotics Res. 9(1), 61–74 (1990)
41. 38.41
42. 38.42
G. Muscio. J.C. Trinkle: Grasp Closure Analysis of Bilaterally Constrained Objects, Tech. Rep. Ser., Vol. 13-01 (Department of Computer Science, Rensselear Polytechnic Institute, Troy 2013) Google Scholar
43. 38.43
44. 38.44
C. Ferrari, J. Canny: Planning optimal grasps, Proc. IEEE Int. Conf. Robotics Autom. (1986) pp. 2290–2295Google Scholar
45. 38.45
V.D. Nguyen: The Synthesis of Force Closure Grasps in the Plane, M.S. Thesis Ser. (MIT Department of Mechanical Engineering, Cambridge 1985), AI-TR861Google Scholar
46. 38.46
R.D. Howe, M.R. Cutkosky: Practical force-motion models for sliding manipulation, Int. J. Robotics Res. 15(6), 557–572 (1996)
47. 38.47
L. Han, J.C. Trinkle, Z. Li: Grasp analysis as linear matrix inequality problems, IEEE Trans. Robotics Autom. 16(6), 663–674 (2000)
48. 38.48
J.C. Trinkle: On the stability and instantaneous velocity of grasped frictionless objects, IEEE Trans. Robotics Autom. 8(5), 560–572 (1992)
49. 38.49
K.H. Hunt, A.E. Samuel, P.R. McAree: Special configurations of multi-finger multi-freedom grippers –A kinematic study, Int. J. Robotics Res. 10(2), 123–134 (1991)
50. 38.50
D.J. Montana: The kinematics of multi-fingered manipulation, IEEE Trans. Robotics Autom. 11(4), 491–503 (1995)
51. 38.51
Y. Nakamura, K. Nagai, T. Yoshikawa: Dynamics and stability in coordination of multiple robotic mechanisms, Int. J. Robotics Res. 8, 44–61 (1989)
52. 38.52
J.S. Pang, J.C. Trinkle: Stability characterizations of rigid body contact problems with coulomb friction, Z. Angew. Math. Mech. 80(10), 643–663 (2000)
53. 38.53
M.R. Cutkosky: Robotic Grasping and Fine Manipulation (Kluwer, Norwell 1985)
54. 38.54
W.S. Howard, V. Kumar: On the stability of grasped objects, IEEE Trans. Robotics Autom. 12(6), 904–917 (1996)
55. 38.55
A.B.A. Cole, J.E. Hauser, S.S. Sastry: Kinematics and control of multifingered hands with rolling contacts, IEEE Trans. Autom. Control 34, 398–404 (1989)
56. 38.56
R.I. Leine, C. Glocker: A set-valued force law for spatial Coulomb–Contensou friction, Eur. J. Mech. A 22(2), 193–216 (2003)
57. 38.57
M. Buss, H. Hashimoto, J. Moore: Dexterous hand grasping force optimization, IEEE Trans. Robotics Autom. 12(3), 406–418 (1996)
58. 38.58
V. Nguyen: Constructing force-closure grasps, Int. J. Robotics Res. 7(3), 3–16 (1988)
59. 38.59
E. Rimon, J.W. Burdick: Mobility of bodies in contact II: How forces are generated by curvature effects, Proc. IEEE Int. Conf. Robotics Autom. (1998) pp. 2336–2341Google Scholar
60. 38.60
R.B. McGhee, D.E. Orin: A mathematical programming approach to control of positions and torques in legged locomotion systems, Proc. ROMANCY (1976)Google Scholar
61. 38.61
K. Waldron: Force and motion management in legged locomotion, IEEE J. Robotics Autom. 2(4), 214–220 (1986)
62. 38.62
T. Yoshikawa, K. Nagai: Manipulating and grasping forces in manipulation by multi-fingered grippers, Proc. IEEE Int. Conf. Robotics Autom. (1987) pp. 1998–2007Google Scholar
63. 38.63
V. Kumar, K. Waldron: Force distribution in closed kinematic chains, IEEE J. Robotics Autom. 4(6), 657–664 (1988)
64. 38.64
M. Buss, L. Faybusovich, J. Moore: Dikin-type algortihms for dexterous grasping force optimization, Int. J. Robotics Res. 17(8), 831–839 (1998)
65. 38.65
D. Prattichizzo, J.K. Salisbury, A. Bicchi: Contact and grasp robustness measures: Analysis and experiments. In: Experimental Robotics-IV, Lecture Notes in Control and Information Sciences, Vol. 223, ed. by O. Khatib, K. Salisbury (Springer, Berlin, Heidelberg 1997) pp. 83–90Google Scholar
66. 38.66
A.M. Dollar, R.D. Howe: The highly adaptive sdm hand: Design and performance evaluation, Int. J. Robotics Res. 29(5), 585–597 (2010)
67. 38.67
M.G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza, A. Bicchi: Adaptive synergies for the design and control of the Pisa/IIT SoftHand, Int. J. Robotics Res. 33(5), 768–782 (2014)
68. 38.68
M.T. Ciocarlie, P.K. Allen: Hand posture subspaces for dexterous robotic grasping, Int. J. Robotics Res. 28(7), 851–867 (2009)
69. 38.69
T. Wimbock, B. Jahn, G. Hirzinger: Synergy level impedance control for multifingered hands, IEEE/RSJ Int Conf Intell. Robots Syst. (IROS) (2011) pp. 973–979Google Scholar
70. 38.70
D. Prattichizzo, M. Malvezzi, M. Gabiccini, A. Bicchi: On the manipulability ellipsoids of underactuated robotic hands with compliance, Robotics Auton. Syst. 60(3), 337–346 (2012)
71. 38.71
D. Prattichizzo, M. Malvezzi, M. Gabiccini, A. Bicchi: On motion and force controllability of precision grasps with hands actuated by soft synergies, IEEE Trans. Robotics 29(6), 1440–1456 (2013)
72. 38.72
M.R. Dogar, S.S. Srinivasa: A framework for push-grasping in clutter, Robotics Sci. Syst. (2011)Google Scholar
73. 38.73
M. Posa, R. Tedrake: Direct trajectory optimization of rigid body dynamical systems through contact, Proc. Workshop Algorithm. Found. Robotics (2012)Google Scholar
74. 38.74
L. Zhang, J.C. Trinkle: The application of particle filtering to grasp acquistion with visual occlusion and tactile sensing, Proc. IEEE Int. Conf Robotics Autom. (2012)Google Scholar
75. 38.75
P. Hebert, N. Hudson, J. Ma, J. Burdick: Fusion of stereo vision, force-torque, and joint sensors for estimation of in-hand object location, Proc. IEEE Int. Conf. Robotics Autom. (2011) pp. 5935–5941Google Scholar
76. 38.76
S. Haidacher, G. Hirzinger: Estimating finger contact location and object pose from contact measurements in 3nd grasping, Proc. IEEE Int. Conf. Robotics Autom. (2003) pp. 1805–1810Google Scholar
77. 38.77
T. Schlegl, M. Buss, T. Omata, G. Schmidt: Fast dextrous re-grasping with optimal contact forces and contact sensor-based impedance control, Proc. IEEE Int. Conf. Robotics Autom. (2001) pp. 103–108Google Scholar
78. 38.78
G. Muscio, F. Pierri, J.C. Trinkle: A hand/arm controller that simultaneously regulates internal grasp forces and the impedance of contacts with the environment, IEEE Conf. Robotics Autom. (2014)Google Scholar
79. 38.79
M.A. Roa, R. Suarez: Computation of independent contact regions for grasping 3-D objects, IEEE Trans. Robotics 25(4), 839–850 (2009)
80. 38.80
M.A. Roa, R. Suarez: Influence of contact types and uncertainties in the computation of independent contact regions, Proc. IEEE Int. Conf. Robotics Autom. (2011) pp. 3317–3323Google Scholar
81. 38.81
A. Rodriguez, M.T. Mason, S. Ferry: From caging to grasping, Int. J. Robotics Res. 31(7), 886–900 (2012)
82. 38.82
C. Davidson, A. Blake: Error-tolerant visual planning of planar grasp, 6th Int. Conf. Comput. Vis. (1998) pp. 911–916Google Scholar