Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter introduces fundamental models of grasp analysis. The overall model is a coupling of models that define contact behavior with widely used models of rigid-body kinematics and dynamics. The contact model essentially boils down to the selection of components of contact force and moment that are transmitted through each contact. Mathematical properties of the complete model naturally give rise to five primary grasp types whose physical interpretations provide insight for grasp and manipulation planning.

After introducing the basic models and types of grasps, this chapter focuses on the most important grasp characteristic: complete restraint. A grasp with complete restraint prevents loss of contact and thus is very secure. Two primary restraint properties are form closure and force closure. A form closure grasp guarantees maintenance of contact as long as the links of the hand and the object are well-approximated as rigid and as long as the joint actuators are sufficiently strong. As will be seen, the primary difference between form closure and force closure grasps is the latter’s reliance on contact friction. This translates into requiring fewer contacts to achieve force closure than form closure.

The goal of this chapter is to give a thorough understanding of the all-important grasp properties of form and force closure. This will be done through detailed derivations of grasp models and discussions of illustrative examples. For an in-depth historical perspective and a treasure-trove bibliography of papers addressing a wide range of topics in grasping, the reader is referred to [38.1].

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

DH:

Denavit–Hartenberg

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

DOF:

degree of freedom

HF:

hard finger

LP:

linear program

PwoF:

point-contact-without-friction

SF:

soft finger

References

  1. A. Bicchi: Hands for dextrous manipulation and powerful grasping: A difficult road towards simplicity, IEEE Trans. Robotics Autom. 16, 652–662 (2000)

    Article  Google Scholar 

  2. J.K. Salisbury: Kinematic and Force Analysis of Articulated Hands, Ph.D. Thesis (Stanford University, Stanford 1982)

    Google Scholar 

  3. A.T. Miller, P.K. Allen: GraspIt! A versatile simulator for robotic grasping, IEEE Robotics Autom. Mag. 11(4), 110–122 (2004)

    Article  Google Scholar 

  4. M. Malvezzi, G. Gioioso, G. Salvietti, D. Prattichizzo: SynGrasp: A matlab toolbox for underactuated and compliant hands, IEEE Robotics Autom. Mag. 22(4), 52–68 (2015)

    Article  Google Scholar 

  5. M. Malvezzi, G. Gioioso, G. Salvietti, D. Prattichizzo, A. Bicchi: Syngrasp: A matlab toolbox for grasp analysis of human and robotic hands, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 1088–1093

    Google Scholar 

  6. SynGrasp: A MATLAB Toolbox for Grasp Analysis of Human and Robotic Hands, http://syngrasp.dii.unisi.it/

  7. M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hoppner, S. Jorg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimbock, S. Wolf, T. Wusthoff, G. Hirzinger: The DLR hand arm system, IEEE Conf. Robotics Autom. (2011) pp. 3175–3182

    Google Scholar 

  8. K. Salisbury, W. Townsend, B. Ebrman, D. DiPietro: Preliminary design of a whole-arm manipulation system (WAMS), Proc. IEEE Int. Conf. Robotics Autom. (1988) pp. 254–260

    Google Scholar 

  9. M.S. Ohwovoriole, B. Roth: An extension of screw theory, J. Mech. Des. 103, 725–735 (1981)

    Google Scholar 

  10. K.H. Hunt: Kinematic Geometry of Mechanisms (Oxford Univ. Press, Oxford 1978)

    MATH  Google Scholar 

  11. T.R. Kane, D.A. Levinson, P.W. Likins: Spacecraft Dynamics (McGraw Hill, New York 1980)

    Google Scholar 

  12. J.J. Craig: Introduction to Robotics: Mechanics and Control, 2nd edn. (Addison-Wesley, Reading 1989)

    MATH  Google Scholar 

  13. J.K. Salisbury, B. Roth: Kinematic and force analysis of articulated mechanical hands, J. Mech. Transm. Autom. Des. 105(1), 35–41 (1983)

    Article  Google Scholar 

  14. M.T. Mason, J.K. Salisbury Jr: Robot Hands and the Mechanics of Manipulation (MIT Press, Cambridge 1985)

    Google Scholar 

  15. A. Bicchi: On the closure properties of robotic grasping, Int. J. Robotics Res. 14(4), 319–334 (1995)

    Article  Google Scholar 

  16. D. Prattichizzo, A. Bicchi: Consistent task specification for manipulation systems with general kinematics, ASME J. Dyn. Syst. Meas. Control 119(4), 760–767 (1997)

    Article  MATH  Google Scholar 

  17. J. Kerr, B. Roth: Analysis of multifingered hands, Int. J. Robotics Res. 4(4), 3–17 (1986)

    Article  Google Scholar 

  18. G. Strang: Introduction to Linear Algebra (Wellesley-Cambridge Press, Wellesley 1993)

    MATH  Google Scholar 

  19. R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robot Manipulation (CRC, Boca Raton 1993)

    Google Scholar 

  20. D. Prattichizzo, A. Bicchi: Dynamic analysis of mobility and graspability of general manipulation systems, IEEE Trans. Robotics Autom. 14(2), 241–258 (1998)

    Article  Google Scholar 

  21. A. Bicchi: On the problem of decomposing grasp and manipulation forces in multiple whole-limb manipulation, Int. J. Robotics Auton. Syst. 13, 127–147 (1994)

    Article  Google Scholar 

  22. A.M. Dollar, R.D. Howe: Joint coupling and actuation design of underactuated hands for unstructured environments, Int. J. Robotics Res. 30, 1157–1169 (2011)

    Article  Google Scholar 

  23. L. Birglen, T. Lalibertè, C. Gosselin: Underactuated robotic hands, Springer Tracts in Advanced Robotics (Springer, Berlin, Heidelberg 2008)

    Book  MATH  Google Scholar 

  24. M.G. Catalano, G. Grioli, A. Serio, E. Farnioli, C. Piazza, A. Bicchi: Adaptive synergies for a humanoid robot hand, Proc. IEEE-RAS Int. Conf. Humanoid Robots (2012) pp. 7–14

    Google Scholar 

  25. M. Gabiccini, A. Bicchi, D. Prattichizzo, M. Malvezzi: On the role of hand synergies in the optimal choice of grasping forces, Auton. Robots 31, 235–252 (2011)

    Article  Google Scholar 

  26. M. Malvezzi, D. Prattichizzo: Evaluation of grasp stiffness in underactuated compliant hands, Proc. IEEE Int. Conf. Robotics Autom. (2013) pp. 2074–2079

    Google Scholar 

  27. S.F. Chen, I. Kao: Conservative congruence transformation for joint and cartesian stiffness matrices of robotic hands and fingers, Int. J. Robotics Res. 19(9), 835–847 (2000)

    Article  Google Scholar 

  28. M.R. Cutkosky, I. Kao: Computing and controlling the compliance of a robotic hand, IEEE Trans. Robotics Autom. 5(2), 151–165 (1989)

    Article  Google Scholar 

  29. A. Albu-Schaffer, O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. Wimbock, S. Wolf, G. Hirzinger: Soft robotics, IEEE Robotics Autom, Mag. 15(3), 20–30 (2008)

    Google Scholar 

  30. A. Bicchi: Force distribution in multiple whole-limb manipulation, Proc. IEEE Int. Conf. Robotics Autom. (1993)

    Google Scholar 

  31. F. Reuleaux: The Kinematics of Machinery (Macmillan, New York 1876), Republished by Dover, New York, 1963

    Google Scholar 

  32. T. Omata, K. Nagata: Rigid body analysis of the indeterminate grasp force in power grasps, IEEE Trans. Robotics Autom. 16(1), 46–54 (2000)

    Article  Google Scholar 

  33. J.C. Trinkle: The Mechanics and Planning of Enveloping Grasps, Ph.D. Thesis (University of Pennsylvania, Department of Systems Engineering, 1987)

    Google Scholar 

  34. K. Lakshminarayana: Mechanics of Form Closure, Tech. Rep., Vol. 78-DET-32 (ASME, New York 1978)

    Google Scholar 

  35. E. Rimon, J. Burdick: Mobility of bodies in contact i: A 2nd order mobility index for multiple-finger grasps, IEEE Trans. Robotics Autom. 14(5), 696–708 (1998)

    Article  Google Scholar 

  36. B. Mishra, J.T. Schwartz, M. Sharir: On the existence and synthesis of multifinger positive grips, Algorithmica 2(4), 541–558 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Somov: Über Schraubengeschwindigkeiten eines festen Körpers bei verschiedener Zahl von Stützflächen, Z. Math. Phys. 42, 133–153 (1897)

    Google Scholar 

  38. P. Somov: Über Schraubengeschwindigkeiten eines festen Körpers bei verschiedener Zahl von Stützflächen, Z. Math. Phys. 42, 161–182 (1897)

    Google Scholar 

  39. A.J. Goldman, A.W. Tucker: Polyhedral convex cones. In: Linear Inequalities and Related Systems, ed. by H.W. Kuhn, A.W. Tucker (Princeton Univ., York 1956) pp. 19–40

    Google Scholar 

  40. X. Markenscoff, L. Ni, C.H. Papadimitriou: The geometry of grasping, Int. J. Robotics Res. 9(1), 61–74 (1990)

    Article  Google Scholar 

  41. D.G. Luenberger: Linear and Nonlinear Programming, 2nd edn. (Addison-Wesley, Reading 1984)

    MATH  Google Scholar 

  42. G. Muscio. J.C. Trinkle: Grasp Closure Analysis of Bilaterally Constrained Objects, Tech. Rep. Ser., Vol. 13-01 (Department of Computer Science, Rensselear Polytechnic Institute, Troy 2013)

    Google Scholar 

  43. Rensselaer Computer Science: http://www.cs.rpi.edu/twiki/bin/view/RoboticsWeb/LabSoftware

  44. C. Ferrari, J. Canny: Planning optimal grasps, Proc. IEEE Int. Conf. Robotics Autom. (1986) pp. 2290–2295

    Google Scholar 

  45. V.D. Nguyen: The Synthesis of Force Closure Grasps in the Plane, M.S. Thesis Ser. (MIT Department of Mechanical Engineering, Cambridge 1985), AI-TR861

    Google Scholar 

  46. R.D. Howe, M.R. Cutkosky: Practical force-motion models for sliding manipulation, Int. J. Robotics Res. 15(6), 557–572 (1996)

    Article  Google Scholar 

  47. L. Han, J.C. Trinkle, Z. Li: Grasp analysis as linear matrix inequality problems, IEEE Trans. Robotics Autom. 16(6), 663–674 (2000)

    Article  Google Scholar 

  48. J.C. Trinkle: On the stability and instantaneous velocity of grasped frictionless objects, IEEE Trans. Robotics Autom. 8(5), 560–572 (1992)

    Article  Google Scholar 

  49. K.H. Hunt, A.E. Samuel, P.R. McAree: Special configurations of multi-finger multi-freedom grippers –A kinematic study, Int. J. Robotics Res. 10(2), 123–134 (1991)

    Article  Google Scholar 

  50. D.J. Montana: The kinematics of multi-fingered manipulation, IEEE Trans. Robotics Autom. 11(4), 491–503 (1995)

    Article  MathSciNet  Google Scholar 

  51. Y. Nakamura, K. Nagai, T. Yoshikawa: Dynamics and stability in coordination of multiple robotic mechanisms, Int. J. Robotics Res. 8, 44–61 (1989)

    Article  Google Scholar 

  52. J.S. Pang, J.C. Trinkle: Stability characterizations of rigid body contact problems with coulomb friction, Z. Angew. Math. Mech. 80(10), 643–663 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. M.R. Cutkosky: Robotic Grasping and Fine Manipulation (Kluwer, Norwell 1985)

    Book  Google Scholar 

  54. W.S. Howard, V. Kumar: On the stability of grasped objects, IEEE Trans. Robotics Autom. 12(6), 904–917 (1996)

    Article  Google Scholar 

  55. A.B.A. Cole, J.E. Hauser, S.S. Sastry: Kinematics and control of multifingered hands with rolling contacts, IEEE Trans. Autom. Control 34, 398–404 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  56. R.I. Leine, C. Glocker: A set-valued force law for spatial Coulomb–Contensou friction, Eur. J. Mech. A 22(2), 193–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Buss, H. Hashimoto, J. Moore: Dexterous hand grasping force optimization, IEEE Trans. Robotics Autom. 12(3), 406–418 (1996)

    Article  Google Scholar 

  58. V. Nguyen: Constructing force-closure grasps, Int. J. Robotics Res. 7(3), 3–16 (1988)

    Article  Google Scholar 

  59. E. Rimon, J.W. Burdick: Mobility of bodies in contact II: How forces are generated by curvature effects, Proc. IEEE Int. Conf. Robotics Autom. (1998) pp. 2336–2341

    Google Scholar 

  60. R.B. McGhee, D.E. Orin: A mathematical programming approach to control of positions and torques in legged locomotion systems, Proc. ROMANCY (1976)

    Google Scholar 

  61. K. Waldron: Force and motion management in legged locomotion, IEEE J. Robotics Autom. 2(4), 214–220 (1986)

    Article  Google Scholar 

  62. T. Yoshikawa, K. Nagai: Manipulating and grasping forces in manipulation by multi-fingered grippers, Proc. IEEE Int. Conf. Robotics Autom. (1987) pp. 1998–2007

    Google Scholar 

  63. V. Kumar, K. Waldron: Force distribution in closed kinematic chains, IEEE J. Robotics Autom. 4(6), 657–664 (1988)

    Article  Google Scholar 

  64. M. Buss, L. Faybusovich, J. Moore: Dikin-type algortihms for dexterous grasping force optimization, Int. J. Robotics Res. 17(8), 831–839 (1998)

    Article  Google Scholar 

  65. D. Prattichizzo, J.K. Salisbury, A. Bicchi: Contact and grasp robustness measures: Analysis and experiments. In: Experimental Robotics-IV, Lecture Notes in Control and Information Sciences, Vol. 223, ed. by O. Khatib, K. Salisbury (Springer, Berlin, Heidelberg 1997) pp. 83–90

    Google Scholar 

  66. A.M. Dollar, R.D. Howe: The highly adaptive sdm hand: Design and performance evaluation, Int. J. Robotics Res. 29(5), 585–597 (2010)

    Article  Google Scholar 

  67. M.G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza, A. Bicchi: Adaptive synergies for the design and control of the Pisa/IIT SoftHand, Int. J. Robotics Res. 33(5), 768–782 (2014)

    Article  Google Scholar 

  68. M.T. Ciocarlie, P.K. Allen: Hand posture subspaces for dexterous robotic grasping, Int. J. Robotics Res. 28(7), 851–867 (2009)

    Article  Google Scholar 

  69. T. Wimbock, B. Jahn, G. Hirzinger: Synergy level impedance control for multifingered hands, IEEE/RSJ Int Conf Intell. Robots Syst. (IROS) (2011) pp. 973–979

    Google Scholar 

  70. D. Prattichizzo, M. Malvezzi, M. Gabiccini, A. Bicchi: On the manipulability ellipsoids of underactuated robotic hands with compliance, Robotics Auton. Syst. 60(3), 337–346 (2012)

    Article  Google Scholar 

  71. D. Prattichizzo, M. Malvezzi, M. Gabiccini, A. Bicchi: On motion and force controllability of precision grasps with hands actuated by soft synergies, IEEE Trans. Robotics 29(6), 1440–1456 (2013)

    Article  Google Scholar 

  72. M.R. Dogar, S.S. Srinivasa: A framework for push-grasping in clutter, Robotics Sci. Syst. (2011)

    Google Scholar 

  73. M. Posa, R. Tedrake: Direct trajectory optimization of rigid body dynamical systems through contact, Proc. Workshop Algorithm. Found. Robotics (2012)

    Google Scholar 

  74. L. Zhang, J.C. Trinkle: The application of particle filtering to grasp acquistion with visual occlusion and tactile sensing, Proc. IEEE Int. Conf Robotics Autom. (2012)

    Google Scholar 

  75. P. Hebert, N. Hudson, J. Ma, J. Burdick: Fusion of stereo vision, force-torque, and joint sensors for estimation of in-hand object location, Proc. IEEE Int. Conf. Robotics Autom. (2011) pp. 5935–5941

    Google Scholar 

  76. S. Haidacher, G. Hirzinger: Estimating finger contact location and object pose from contact measurements in 3nd grasping, Proc. IEEE Int. Conf. Robotics Autom. (2003) pp. 1805–1810

    Google Scholar 

  77. T. Schlegl, M. Buss, T. Omata, G. Schmidt: Fast dextrous re-grasping with optimal contact forces and contact sensor-based impedance control, Proc. IEEE Int. Conf. Robotics Autom. (2001) pp. 103–108

    Google Scholar 

  78. G. Muscio, F. Pierri, J.C. Trinkle: A hand/arm controller that simultaneously regulates internal grasp forces and the impedance of contacts with the environment, IEEE Conf. Robotics Autom. (2014)

    Google Scholar 

  79. M.A. Roa, R. Suarez: Computation of independent contact regions for grasping 3-D objects, IEEE Trans. Robotics 25(4), 839–850 (2009)

    Article  Google Scholar 

  80. M.A. Roa, R. Suarez: Influence of contact types and uncertainties in the computation of independent contact regions, Proc. IEEE Int. Conf. Robotics Autom. (2011) pp. 3317–3323

    Google Scholar 

  81. A. Rodriguez, M.T. Mason, S. Ferry: From caging to grasping, Int. J. Robotics Res. 31(7), 886–900 (2012)

    Article  Google Scholar 

  82. C. Davidson, A. Blake: Error-tolerant visual planning of planar grasp, 6th Int. Conf. Comput. Vis. (1998) pp. 911–916

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Prattichizzo .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Grasp analysis using the MATLAB toolbox SynGrasp available from http://handbookofrobotics.org/view-chapter/04/videodetails/551

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prattichizzo, D., Trinkle, J.C. (2016). Grasping. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics