Contact Modeling and Manipulation

  • Imin KaoEmail author
  • Kevin M. Lynch
  • Joel W. Burdick
Part of the Springer Handbooks book series (SHB)


Robotic manipulators use contact forces to grasp and manipulate objects in their environments. Fixtures rely on contacts to immobilize workpieces. Mobile robots and humanoids use wheels or feet to generate the contact forces that allow them to locomote. Modeling of the contact interface, therefore, is fundamental to analysis, design, planning, and control of many robotic tasks.

This chapter presents an overview of the modeling of contact interfaces, with a particular focus on their use in manipulation tasks, including graspless or nonprehensile manipulation modes such as pushing. Analysis and design of grasps and fixtures also depends on contact modeling, and these are discussed in more detail in Chap.  38. Sections 37.237.5 focus on rigid-body models of contact. Section 37.2 describes the kinematic constraints caused by contact, and Sect. 37.3 describes the contact forces that may arise with Coulomb friction. Section 37.4 provides examples of analysis of multicontact manipulation tasks with rigid bodies and Coulomb friction. Section 37.5 extends the analysis to manipulation by pushing. Section 37.6 introduces modeling of contact interfaces, kinematic duality, and pressure distribution and soft contact interface. Section 37.7 describes the concept of the friction limit surface and illustrates it with an example demonstrating the construction of a limit surface for a soft contact. Finally, Sect. 37.8 discusses how these more accurate models can be used in fixture analysis and design.


Contact Force Normal Force Contact Interface Hertzian Contact Soft Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





center of rotation


complementarity problem




degree of freedom


linear constraint satisfaction program


  1. 37.1
    A. Bicchi: On the problem of decomposing grasp and manipulation forces in multiple whole-limb manipulation, Int. J. Robotics Auton. Syst. 13, 127–147 (1994)CrossRefGoogle Scholar
  2. 37.2
    K. Harada, M. Kaneko, T. Tsuji: Rolling based manipulation for multiple objects, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (2000) pp. 3888–3895Google Scholar
  3. 37.3
    M.R. Cutkosky, I. Kao: Computing and controlling the compliance of a robotic hand, IEEE Trans. Robotics Autom. 5(2), 151–165 (1989)CrossRefGoogle Scholar
  4. 37.4
    M.R. Cutkosky, S.-H. Lee: Fixture planning with friction for concurrent product/process design, Proc. NSF Eng. Des. Res. Conf. (1989)Google Scholar
  5. 37.5
    S.-H. Lee, M. Cutkosky: Fixture planning with friction, ASME J. Eng. Ind. 113(3), 320–327 (1991)CrossRefGoogle Scholar
  6. 37.6
    Q. Lin, J.W. Burdick, E. Rimon: A stiffness-based quality measure for compliant grasps and fixtures, IEEE Trans. Robotics Autom. 16(6), 675–688 (2000)CrossRefGoogle Scholar
  7. 37.7
    P. Lötstedt: Coulomb friction in two-dimensional rigid body systems, Z. Angew. Math. Mech. 61, 605–615 (1981)MathSciNetCrossRefGoogle Scholar
  8. 37.8
    P. Lötstedt: Mechanical systems of rigid bodies subject to unilateral constraints, SIAM J. Appl. Math. 42(2), 281–296 (1982)MathSciNetCrossRefGoogle Scholar
  9. 37.9
    P.E. Dupont: The effect of Coulomb friction on the existence and uniqueness of the forward dynamics problem, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Nice (1992) pp. 1442–1447Google Scholar
  10. 37.10
    M.A. Erdmann: On a representation of friction in configuration space, Int. J. Robotics Res. 13(3), 240–271 (1994)CrossRefGoogle Scholar
  11. 37.11
    K.M. Lynch, M.T. Mason: Pulling by pushing, slip with infinite friction, and perfectly rough surfaces, Int. J. Robotics Res. 14(2), 174–183 (1995)CrossRefGoogle Scholar
  12. 37.12
    J.S. Pang, J.C. Trinkle: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction, Math. Prog. 73, 199–226 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 37.13
    J.C. Trinkle, J.S. Pang, S. Sudarsky, G. Lo: On dynamic multi-rigid-body contact problems with Coulomb friction, Z. Angew. Math. Mech. 77(4), 267–279 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 37.14
    M.T. Mason: Mechanics of Robotic Manipulation (MIT Press, Cambrige 2001)Google Scholar
  15. 37.15
    Y.-T. Wang, V. Kumar, J. Abel: Dynamics of rigid bodies undergoing multiple frictional contacts, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Nice (1992) pp. 2764–2769Google Scholar
  16. 37.16
    T.H. Speeter: Three-dimensional finite element analysis of elastic continua for tactile sensing, Int. J. Robotics Res. 11(1), 1–19 (1992)CrossRefGoogle Scholar
  17. 37.17
    K. Dandekar, A.K. Srinivasan: A 3-dimensional finite element model of the monkey fingertip for predicting responses of slowly adapting mechanoreceptors, ASME Bioeng. Conf., Vol. 29 (1995) pp. 257–258Google Scholar
  18. 37.18
    N. Xydas, M. Bhagavat, I. Kao: Study of soft-finger contact mechanics using finite element analysis and experiments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (2000)Google Scholar
  19. 37.19
    K. Komvopoulos, D.-H. Choi: Elastic finite element analysis of multi-asperity contacts, J. Tribol. 114, 823–831 (1992)CrossRefGoogle Scholar
  20. 37.20
    L.T. Tenek, J. Argyris: Finite Element Analysis for Composite Structures (Kluwer, Bosten 1998)zbMATHCrossRefGoogle Scholar
  21. 37.21
    Y. Nakamura: Contact stability measure and optimal finger force control of multi-fingered robot hands, crossing bridges: Advances in flexible automation and robotics, Proc. U.S.-Jpn. Symp. Flex. Autom. (1988) pp. 523–528Google Scholar
  22. 37.22
    Y.C. Park, G.P. Starr: Optimal grasping using a multifingered robot hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Cincinnati (1990) pp. 689–694CrossRefGoogle Scholar
  23. 37.23
    E. Rimon, J. Burdick: On force and form closure for multiple finger grasps, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 1795–1800CrossRefGoogle Scholar
  24. 37.24
    E. Rimon, J.W. Burdick: New bounds on the number of frictionless fingers required to immobilize planar objects, J. Robotics Sys. 12(6), 433–451 (1995)zbMATHCrossRefGoogle Scholar
  25. 37.25
    E. Rimon, J.W. Burdick: Mobility of bodies in contact – Part I: A 2nd-order mobility index for multiple-finger grasps, IEEE Trans. Robotics Autom. 14(5), 696–708 (1998)CrossRefGoogle Scholar
  26. 37.26
    D.J. Montana: The kinematics of contact and grasp, Int. J. Robotics Res. 7(3), 17–32 (1988)CrossRefGoogle Scholar
  27. 37.27
    C.S. Cai, B. Roth: On the planar motion of rigid bodies with point contact, Mech. Mach. Theory 21(6), 453–466 (1986)CrossRefGoogle Scholar
  28. 37.28
    C. Cai, B. Roth: On the spatial motion of a rigid body with point contact, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 686–695Google Scholar
  29. 37.29
    A.B.A. Cole, J.E. Hauser, S.S. Sastry: Kinematics and control of multifingered hands with rolling contact, IEEE Trans. Autom. Control 34(4), 398–404 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 37.30
    R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton 1994)zbMATHGoogle Scholar
  31. 37.31
    F. Reuleaux: The Kinematics of Machinery (Dover, New York 1963), reprint of MacMillan, 1876 Google Scholar
  32. 37.32
    C.A. Coulomb: Theorie des Machines Simples en Ayant Egard au Frottement de Leurs Parties et a la Roideur des Cordages (Bachelier, Paris 1821)Google Scholar
  33. 37.33
    Y. Maeda, T. Arai: Planning of graspless manipulation by a multifingered robot hand, Adv. Robotics 19(5), 501–521 (2005)CrossRefGoogle Scholar
  34. 37.34
    M.T. Mason: Two graphical methods for planar contact problems, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Osaka (1991) pp. 443–448Google Scholar
  35. 37.35
    R. Howe, I. Kao, M. Cutkosky: Sliding of robot fingers under combined torsion and shear loading, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1, Philadelphia (1988) pp. 103–105Google Scholar
  36. 37.36
    I. Kao, M.R. Cutkosky: Dextrous manipulation with compliance and sliding, Int. J. Robotics Res. 11(1), 20–40 (1992)CrossRefGoogle Scholar
  37. 37.37
    R.D. Howe, M.R. Cutkosky: Practical force-motion models for sliding manipulation, Int. J. Robotics Res. 15(6), 555–572 (1996)CrossRefGoogle Scholar
  38. 37.38
    N. Xydas, I. Kao: Modeling of contact mechanics and friction limit surface for soft fingers with experimental results, Int. J. Robotics Res. 18(9), 941–950 (1999)CrossRefGoogle Scholar
  39. 37.39
    I. Kao, F. Yang: Stiffness and contact mechanics for soft fingers in grasping and manipulation, IEEE Trans. Robotics Autom. 20(1), 132–135 (2004)CrossRefGoogle Scholar
  40. 37.40
    J. Jameson, L. Leifer: Quasi-Static Analysis: A method for predicting grasp stability, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 876–883Google Scholar
  41. 37.41
    S. Goyal, A. Ruina, J. Papadopoulos: Planar sliding with dry friction: Part 2, Dynamics of motion Wear 143, 331–352 (1991)Google Scholar
  42. 37.42
    P. Tiezzi, I. Kao: Modeling of viscoelastic contacts and evolution of limit surface for robotic contact interface, IEEE Trans. Robotics 23(2), 206–217 (2007)CrossRefGoogle Scholar
  43. 37.43
    M. Anitescu, F. Potra: Formulating multi-rigid-body contact problems with friction as solvable linear complementarity problems, ASME J. Nonlin. Dyn. 14, 231–247 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 37.44
    S. Berard, J. Trinkle, B. Nguyen, B. Roghani, J. Fink, V. Kumar: daVinci code: A multi-model simulation and analysis tool for multi-body systems, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007)Google Scholar
  45. 37.45
    P. Song, J.-S. Pang, V. Kumar: A semi-implicit time-stepping model for frictional compliant contact problems, Int. J. Numer. Methods Eng. 60(13), 2231–2261 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 37.46
    D. Stewart, J. Trinkle: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction, Int. J. Numer. Methods Eng. 39, 2673–2691 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 37.47
    R.W. Cottle, J.-S. Pang, R.E. Stone: The Linear Complementarity Problem (Academic, New York 1992)zbMATHGoogle Scholar
  48. 37.48
    S.N. Simunovic: Force information in assembly processes, Int. Symp. Ind. Robots (1975)Google Scholar
  49. 37.49
    V.-D. Nguyen: Constructing force-closure grasps, Int. J. Robotics Res. 7(3), 3–16 (1988)CrossRefGoogle Scholar
  50. 37.50
    K.M. Lynch: Toppling manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999)Google Scholar
  51. 37.51
    M.T. Zhang, K. Goldberg, G. Smith, R.-P. Berretty, M. Overmars: Pin design for part feeding, Robotica 19(6), 695–702 (2001)Google Scholar
  52. 37.52
    D. Reznik, J. Canny: The Coulomb pump: A novel parts feeding method using a horizontally-vibrating surface, Proc. IEEE Int. Conf. Robotics Autom. (1998) pp. 869–874Google Scholar
  53. 37.53
    A.E. Quaid: A miniature mobile parts feeder: Operating principles and simulation results, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 2221–2226Google Scholar
  54. 37.54
    D. Reznik, J. Canny: A flat rigid plate is a universal planar manipulator, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 1471–1477Google Scholar
  55. 37.55
    D. Reznik, J. Canny: C'mon part, do the local motion!, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 2235–2242Google Scholar
  56. 37.56
    T. Vose, P. Umbanhowar, K.M. Lynch: Vibration-induced frictional force fields on a rigid plate, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007)Google Scholar
  57. 37.57
    M.T. Mason: Mechanics and planning of manipulator pushing operations, Int. J. Robotics Res. 5(3), 53–71 (1986)CrossRefGoogle Scholar
  58. 37.58
    K.Y. Goldberg: Orienting polygonal parts without sensors, Algorithmica 10, 201–225 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 37.59
    R.C. Brost: Automatic grasp planning in the presence of uncertainty, Int. J. Robotics Res. 7(1), 3–17 (1988)CrossRefGoogle Scholar
  60. 37.60
    J.C. Alexander, J.H. Maddocks: Bounds on the friction-dominated motion of a pushed object, Int. J. Robotics Res. 12(3), 231–248 (1993)CrossRefGoogle Scholar
  61. 37.61
    M.A. Peshkin, A.C. Sanderson: The motion of a pushed, sliding workpiece,, IEEE J. Robotics Autom. 4(6), 569–598 (1988)CrossRefGoogle Scholar
  62. 37.62
    M.A. Peshkin, A.C. Sanderson: Planning robotic manipulation strategies for workpieces that slide, IEEE J. Robotics Autom. 4(5), 524–531 (1988)CrossRefGoogle Scholar
  63. 37.63
    M. Brokowski, M. Peshkin, K. Goldberg: Curved fences for part alignment, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 467–473CrossRefGoogle Scholar
  64. 37.64
    K.M. Lynch: The mechanics of fine manipulation by pushing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Nice (1992) pp. 2269–2276Google Scholar
  65. 37.65
    K.M. Lynch, M.T. Mason: Stable pushing: Mechanics, controllability, and planning, Int. J. Robotics Res. 15(6), 533–556 (1996)CrossRefGoogle Scholar
  66. 37.66
    K. Harada, J. Nishiyama, Y. Murakami, M. Kaneko: Pushing multiple objects using equivalent friction center, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 2485–2491Google Scholar
  67. 37.67
    J.D. Bernheisel, K.M. Lynch: Stable transport of assemblies: Pushing stacked parts, IEEE Trans. Autom. Sci. Eng. 1(2), 163–168 (2004)CrossRefGoogle Scholar
  68. 37.68
    J.D. Bernheisel, K.M. Lynch: Stable transport of assemblies by pushing, IEEE Trans. Robotics 22(4), 740–750 (2006)CrossRefGoogle Scholar
  69. 37.69
    H. Mayeda, Y. Wakatsuki: Strategies for pushing a 3D block along a wall, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Osaka (1991) pp. 461–466Google Scholar
  70. 37.70
    H. Hertz: On the Contact of Rigid Elastic Solids and on Hardness. In: Miscellaneous Papers, ed. by H. Hertz (MacMillan, London 1882) pp. 146–183Google Scholar
  71. 37.71
    K.L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge 1985)zbMATHCrossRefGoogle Scholar
  72. 37.72
    S.P. Timoshenko, J.N. Goodier: Theory of Elasticity, 3rd edn. (McGraw-Hill, New York 1970)zbMATHGoogle Scholar
  73. 37.73
    M.A. Meyers, K.K. Chawla: Mechanical Behavior of Materials (Prentice Hall, Upper Saddle River, 1999)zbMATHGoogle Scholar
  74. 37.74
    C.D. Tsai: Nonlinear Modeling on Viscoelastic Contact Interface: Theoretical Study and Experimental Validation, Ph.D. Thesis (Stony Brook University, Stony Brook 2010)Google Scholar
  75. 37.75
    C. Tsai, I. Kao, M. Higashimori, M. Kaneko: Modeling, sensing and interpretation of viscoelastic contact interface, J. Adv. Robotics 26(11/12), 1393–1418 (2012)CrossRefGoogle Scholar
  76. 37.76
    Y.C. Fung: Biomechanics: Mechanical Properties of Living Tissues (Springer, Berlin, Heidelberg 1993)CrossRefGoogle Scholar
  77. 37.77
    W. Flugge: Viscoelasticity (Blaisdell, Waltham 1967)zbMATHGoogle Scholar
  78. 37.78
    J.C. Maxwell: On the dynamical theory of gases, Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)CrossRefGoogle Scholar
  79. 37.79
    N. Sakamoto, M. Higashimori, T. Tsuji, M. Kaneko: An optimum design of robotic hand for handling a visco-elastic object based on maxwell model, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 1219–1225Google Scholar
  80. 37.80
    D.P. Noonan, H. Liu, Y.H. Zweiri, K.A. Althoefer, L.D. Seneviratne: A dual-function wheeled probe for tissue viscoelastic property indentification during minimally invasive surgery, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 2629–2634Google Scholar
  81. 37.81
    P. Tiezzi, I. Kao: Characteristics of contact and limit surface for viscoelastic fingers, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006) pp. 1365–1370Google Scholar
  82. 37.82
    P. Tiezzi, I. Kao, G. Vassura: Effect of layer compliance on frictional behavior of soft robotic fingers, Adv. Robotics 21(14), 1653–1670 (2007)CrossRefGoogle Scholar
  83. 37.83
    M. Kimura, Y. Sugiyama, S. Tomokuni, S. Hirai: Constructing rheologically deformable virtual objects, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3737–3743Google Scholar
  84. 37.84
    W.N. Findley, J.S.Y. Lay: A modified superposition principle applied to creep of non-linear viscoelastic material under abrupt changes in state of combined stress, Trans. Soc. Rheol. 11(3), 361–380 (1967)CrossRefGoogle Scholar
  85. 37.85
    D.B. Adolf, R.S. Chambers, J. Flemming: Potential energy clock model: Justification and challenging predictions, J. Rheol. 51(3), 517–540 (2007)CrossRefGoogle Scholar
  86. 37.86
    A.Z. Golik, Y.F. Zabashta: A molecular model of creep and stress relaxation in crystalline polymers, Polym. Mech. 7(6), 864–869 (1971)CrossRefGoogle Scholar
  87. 37.87
    B.H. Zimm: Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss, J. Chem. Phys. 24(2), 269–278 (1956)MathSciNetCrossRefGoogle Scholar
  88. 37.88
    T. Alfrey: A molecular theory of the viscoelastic behavior of an amorphous linear polymer, J. Chem. Phys. 12(9), 374–379 (1944)CrossRefGoogle Scholar
  89. 37.89
    P.E. Rouse Jr.: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, J. Chem. Phys. 21(7), 1272–1280 (1953)CrossRefGoogle Scholar
  90. 37.90
    F. Bueche: The viscoelastic properties of plastics, J. Chem. Phys. 22(4), 603–609 (1954)CrossRefGoogle Scholar
  91. 37.91
    L.R.G. Treloar: The Physics of Rubber Elasticity (Clarendon Press, Oxford, 1975)zbMATHGoogle Scholar
  92. 37.92
    T.G. Goktekin, A.W. Bargteil, J.F. O'Brien: A method for animating viscoelastic fluid, ACM Trans. Graph. 23(3), 463–468 (1977)CrossRefGoogle Scholar
  93. 37.93
    S. Arimoto, P.A.N. Nguyen, H.Y. Han, Z. Doulgeri: Dynamics and control of a set of dual fingers with soft tips, Robotica 18, 71–80 (2000)CrossRefGoogle Scholar
  94. 37.94
    T. Inoue, S. Hirai: Modeling of soft fingertip for object manipulation using tactile sensig, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Las Vegas, Nevada (2003)Google Scholar
  95. 37.95
    T. Inoue, S. Hirai: Rotational contact model of soft fingertip for tactile sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 2957–2962Google Scholar
  96. 37.96
    T. Inoue, S. Hirai: Elastic model of deformable fingertip for soft-fingered manipulation, IEEE Trans. Robotics 22, 1273–1279 (2006)CrossRefGoogle Scholar
  97. 37.97
    T. Inoue, S. Hirai: Dynamic stable manipulation via soft-fingered hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 586–591Google Scholar
  98. 37.98
    V.A. Ho, D.V. Dat, S. Sugiyama, S. Hirai: Development and analysis of a sliding tactile soft fingertip embedded with a microforce/moment sensor, IEEE Trans. Robotics 27(3), 411–424 (2011)CrossRefGoogle Scholar
  99. 37.99
    D. Turhan, Y. Mengi: Propagation of initially plane waves in nonhomogeneous viscoelastic media, Int. J. Solids Struct. 13(2), 79–92 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  100. 37.100
    P. Stucky, W. Lord: Finite element modeling of transient ultrasonic waves in linear viscoelastic media, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(1), 6–16 (2001)CrossRefGoogle Scholar
  101. 37.101
    J.M. Pereira, J.J. Mansour, B.R. Davis: Dynamic measurement of the viscoelastic properties of skin, J. Biomech. 24(2), 157–162 (1991)CrossRefGoogle Scholar
  102. 37.102
    R. Fowles, R.F. Williams: Plane stress wave propagation in solids, J. Appl. Phys. 41(1), 360–363 (1970)CrossRefGoogle Scholar
  103. 37.103
    E. Wolf: Progress in Optics (North-Holland, Amsterdam 1992)Google Scholar
  104. 37.104
    E.J. Nicolson, R.S. Fearing: The reliability of curvature estimates from linear elastic tactile sensors, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995)Google Scholar
  105. 37.105
    M. Abramowitz, I. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and mathematical Tables, 7th edn. (Dover, New York 1972)zbMATHGoogle Scholar
  106. 37.106
    I. Kao, S.-F. Chen, Y. Li, G. Wang: Application of bio-engineering contact interface and MEMS in robotic and human augmented systems, IEEE Robotics Autom, Mag. 10(1), 47–53 (2003)Google Scholar
  107. 37.107
    S. Goyal, A. Ruina, J. Papadopoulos: Planar sliding with dry friction: Part 1. Limit surface and moment function, Wear 143, 307–330 (1991)CrossRefGoogle Scholar
  108. 37.108
    J.W. Jameson: Analytic Techniques for Automated Grasp. Ph.D. Thesis (Department of Mechanical Engineering, Stanford University, Stanford 1985)Google Scholar
  109. 37.109
    S. Goyal, A. Ruina, J. Papadopoulos: Limit surface and moment function description of planar sliding, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Scottsdale (1989) pp. 794–799Google Scholar
  110. 37.110
    K.M. Lynch, M.T. Mason: Dynamic nonprehensile manipulation: Controllability, planning, and experiments, Int. J. Robotics Res. 18(1), 64–92 (1999)CrossRefGoogle Scholar
  111. 37.111
    A.J. Goldman, A.W. Tucker: Polyhedral convex cones. In: Linear Inequalities and Related Systems, ed. by H.W. Kuhn, A.W. Tucker (Princeton Univ. Press, Princeton 1956)Google Scholar
  112. 37.112
    M.A. Erdman: A configuration space friction cone, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Osaka (1991) pp. 455–460Google Scholar
  113. 37.113
    M.A. Erdmann: Multiple-point contact with friction: Computing forces and motions in configuration space, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Yokohama (1993) pp. 163–170Google Scholar
  114. 37.114
    S. Hirai, H. Asada: Kinematics and statics of manipulation using the theory of polyhedral convex cones, Int. J. Robotics Res. 12(5), 434–447 (1993)CrossRefGoogle Scholar
  115. 37.115
    R.S. Ball: The Theory of Screws (Cambridge Univ. Press, Cambridge 1900)zbMATHGoogle Scholar
  116. 37.116
    K.H. Hunt: Kinematic Geometry of Mechanisms (Oxford Univ. Press, Oxford 1978)zbMATHGoogle Scholar
  117. 37.117
    J.K. Davidson, K.H. Hunt: Robots and Screw Theory (Oxford Univ. Press, Oxford 2004)zbMATHGoogle Scholar
  118. 37.118
    J.M. Selig: Geometric Fundamentals of Robotics, 2nd edn. (Springer, Berlin, Heidelberg 2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringStony Brook UniversityStony BrookUSA
  2. 2.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Department of Mechanical EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations