Skip to main content

3-D Vision for Navigation and Grasping

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter, we describe algorithms for three-dimensional (GlossaryTerm

3-D

) vision that help robots accomplish navigation and grasping. To model cameras, we start with the basics of perspective projection and distortion due to lenses. This projection from a 3-D world to a two-dimensional (GlossaryTerm

2-D

) image can be inverted only by using information from the world or multiple 2-D views. If we know the 3-D model of an object or the location of 3-D landmarks, we can solve the pose estimation problem from one view. When two views are available, we can compute the 3-D motion and triangulate to reconstruct the world up to a scale factor. When multiple views are given either as sparse viewpoints or a continuous incoming video, then the robot path can be computer and point tracks can yield a sparse 3-D representation of the world. In order to grasp objects, we can estimate 3-D pose of the end effector or 3-D coordinates of the graspable points on the object.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

6-D:

six-dimensional

GPS:

global positioning system

IMU:

inertial measurement unit

MRF:

Markov random field

PnP:

prespective-n-point

SLAM:

simultaneous localization and mapping

SVD:

singular value decomposition

References

  1. S. Izadi, R.A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux, S. Hodges, P. Kohli, J. Shotton, A.J. Davison, A. Fitzgibbon: Kinectfusion: Real-time dynamic 3D surface reconstruction and interaction, ACM SIGGRAPH 2011 Talks (2011) p. 23

    Google Scholar 

  2. Google: Atap project tango, https://www.google.com/atap/projecttango (2014)

  3. J.A. Hesch, D.G. Kottas, S.L. Bowman, S.I. Roumeliotis: Camera-IMU-based localization: Observability analysis and consistency improvement, Int. J.Robotics Res. 33(1), 182–201 (2014)

    Article  Google Scholar 

  4. N. Snavely, S.M. Seitz, R. Szeliski: Modeling the world from internet photo collections, Int. J.Comput. Vis. 80(2), 189–210 (2008)

    Article  Google Scholar 

  5. Z. Kukelova, M. Bujnak, T. Pajdla: Polynomial eigenvalue solutions to minimal problems in computer vision, IEEE Trans. Pattern Anal.Mach. Intell. 34(7), 1381–1393 (2012)

    Article  Google Scholar 

  6. F. Kahl, S. Agarwal, M.K. Chandraker, D. Kriegman, S. Belongie: Practical global optimization for multiview geometry, Int. J.Comput. Vis. 79(3), 271–284 (2008)

    Article  MATH  Google Scholar 

  7. R.I. Hartley, F. Kahl: Global optimization through rotation space search, Int. J.Comput. Vis. 82(1), 64–79 (2009)

    Article  MATH  Google Scholar 

  8. Z. Zhang: A flexible new technique for camera calibration, IEEE Trans. Pattern Anal.Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

  9. M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R. Koch: Visual modeling with a hand-held camera, Int. J.Comput. Vis. 59, 207–232 (2004)

    Article  Google Scholar 

  10. M. Pollefeys, L. Van Gool: Stratified self-calibration with the modulus constraint, IEEE Trans. Pattern Anal.Mach. Intell. 21, 707–724 (1999)

    Article  Google Scholar 

  11. O. Faugeras, Q.-T. Luong, T. Papadopoulo: The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications (MIT Press, Cambridge 2001)

    Book  MATH  Google Scholar 

  12. R. Hartley, A. Zisserman: Multiple View Geometry (Cambridge Univ. Press, Cambridge 2000)

    MATH  Google Scholar 

  13. K. Ottenberg, R.M. Haralick, C.-N. Lee, M. Nolle: Review and analysis of solutions of the three-point perspective problem, Int. J.Comput. Vis. 13, 331–356 (1994)

    Article  Google Scholar 

  14. M.A. Fischler, R.C. Bolles: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, ACM Commun. 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  15. R. Kumar, A.R. Hanson: Robust methods for estimaging pose and a sensitivity analysis, Comput. Vis.Image Underst. 60, 313–342 (1994)

    Article  Google Scholar 

  16. C.-P. Lu, G. Hager, E. Mjolsness: Fast and globally convergent pose estimation from video images, IEEE Trans. Pattern Anal.Mach. Intell. 22, 610–622 (2000)

    Article  Google Scholar 

  17. L. Quan, Z. Lan: Linear n-point camera pose determination, IEEE Trans. Pattern Anal.Mach. Intell. 21, 774–780 (1999)

    Article  Google Scholar 

  18. A. Ansar, K. Daniilidis: Linear pose estimation from points and lines, IEEE Trans. Pattern Anal.Mach. Intell. 25, 578–589 (2003)

    Article  MATH  Google Scholar 

  19. V. Lepetit, F. Moreno-Noguer, P. Fua: EPNP: An accurate $o(n)$ solution to the PNP problem, Int. J. Comput. Vis. 81(2), 155–166 (2009)

    Article  Google Scholar 

  20. G.H. Golub, C.F. van Loan: Matrix Computations (Johns Hopkins Univ. Press, Baltimore 1983)

    MATH  Google Scholar 

  21. J.A. Hesch, S.I. Roumeliotis: A direct least-squares (dls) method for pnp, IEEE Int. Conf.Comput. Vis. (ICCV) (2011) pp. 383–390

    Google Scholar 

  22. C.J. Taylor, D.J. Kriegman: Minimization on the Lie Group SO(3) and Related Manifolds (Yale University, New Haven 1994)

    Google Scholar 

  23. P.-A. Absil, R. Mahony, R. Sepulchre: Optimization Algorithms on Matrix Manifolds (Princeton Univ. Press, Princeton 2009)

    MATH  Google Scholar 

  24. Y. Ma, J. Košecká, S. Sastry: Optimization criteria and geometric algorithms for motion and structure estimation, Int. J.Comput. Vis. 44(3), 219–249 (2001)

    Article  MATH  Google Scholar 

  25. R.I. Hartley, P. Sturm: Triangulation, Comput. Vis.Image Underst. 68(2), 146–157 (1997)

    Article  Google Scholar 

  26. B. Kitt, A. Geiger, H. Lategahn: Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme, IEEE Intell. Veh. Symp. (IV) (2010)

    Google Scholar 

  27. B.K.P. Horn, H.M. Hilden, S. Negahdaripour: Closed-form solution of absolute orientation using orthonormal matrices, J. Opt. Soc. Am. A 5, 1127–1135 (1988)

    Article  MathSciNet  Google Scholar 

  28. A.J. Davison, I.D. Reid, N.D. Molton, O. Stasse: Monoslam: Real-time single camera SLAM, IEEE Trans.Pattern Anal.Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  29. R. Tron, K. Daniilidis: On the quotient representation for the essential manifold, Proc. IEEE Conf.Comput. Vis.Pattern Recognit. (2014) pp. 1574–1581

    Google Scholar 

  30. T.S. Huang, O.D. Faugeras: Some properties of the E matrix in two-view motion estimation, IEEE Trans. Pattern Anal.Mach. Intell. 11, 1310–1312 (1989)

    Article  Google Scholar 

  31. D. Nister: An efficient solution for the five-point relative pose problem, IEEE Trans. Pattern Anal.Mach. Intell. 26, 756–777 (2004)

    Article  Google Scholar 

  32. H. Li, R. Hartley: Five-point motion estimation made easy, IEEE 18th Int. Conf. Pattern Recognit. (ICPR), Vol. 1 (2006) pp. 630–633

    Google Scholar 

  33. Z. Kukelova, M. Bujnak, T. Pajdla: Polynomial eigenvalue solutions to the 5-pt and 6-pt relative pose problems, BMVC (2008) pp. 1–10

    Google Scholar 

  34. H. Stewenius, C. Engels, D. Nistér: Recent developments on direct relative orientation, ISPRS J.Photogramm.Remote Sens. 60(4), 284–294 (2006)

    Article  Google Scholar 

  35. D. Batra, B. Nabbe, M. Hebert: An alternative formulation for five point relative pose problem, IEEE WorkshopMotionVideo Comput. (2007) pp. 21–21

    Google Scholar 

  36. Center for Machine Perception, Minimal problems in computer vision; http://cmp.felk.cvut.cz/minimal/5_pt_relative.php

  37. S. Maybank: Theory of Reconstruction from Image Motion (Springer, Berlin, Heidelberg 1993)

    Book  MATH  Google Scholar 

  38. S.J. Maybank: The projective geometry of ambiguous surfaces, Phil. Trans. Royal Soc. Lond. A 332(1623), 1–47 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Jepson, D.J. Heeger: A fast subspace algorithm for recovering rigid motion, Proc. IEEE WorkshopVis. Motion, Princeton (1991) pp. 124–131

    Chapter  Google Scholar 

  40. C. Fermüller, Y. Aloimonos: Algorithmic independent instability of structure from motion, Proc. 5th Eur. Conf. Comput. Vision, Freiburg (1998)

    Google Scholar 

  41. K. Daniilidis, M. Spetsakis: Understanding noise sensitivity in structure from motion. In: Visual Navigation, ed. by Y. Aloimonos (Lawrence Erlbaum, Mahwah 1996) pp. 61–88

    Google Scholar 

  42. S. Soatto, R. Brockett: Optimal structure from motion: Local ambiguities and global estimates, IEEE Conf. Comput. Vis.Pattern Recognit., Santa Barbara (1998)

    Google Scholar 

  43. J. Oliensis: A new structure-from-motion ambiguity, IEEE Trans. Pattern Anal.Mach. Intell. 22, 685–700 (1999)

    Article  Google Scholar 

  44. O. Naroditsky, X.S. Zhou, J. Gallier, S. Roumeliotis, K. Daniilidis: Two efficient solutions for visual odometry using directional correspondence, IEEE Trans. Patterns Anal. Mach. Intell. (2012)

    Google Scholar 

  45. Y. Ma, K. Huang, R. Vidal, J. Kosecka, S. Sastry: Rank conditions of the multiple view matrix, Int. J.Comput. Vis. 59(2), 115–139 (2004)

    Article  MATH  Google Scholar 

  46. Y. Ma, S. Soatto, J. Kosecka, S. Sastry: An Invitation to 3-D Vision: From Images to Geometric Models (Springer, Berlin, Heidelberg 2003)

    MATH  Google Scholar 

  47. W. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon: Bundle adjustment – A modern synthesis, Lect. Notes Comput. Sci 1883, 298–372 (2000)

    Article  Google Scholar 

  48. M. Lourakis, A. Argyros: The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg–Marquard Method, Tech. Rep, Vol. 340 (ICS/FORTH, Heraklion 2004)

    Google Scholar 

  49. S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg: Calibrated, registered images of an extended urban area, Int. Conf. Comput. Vis.Pattern Recognit., Kauai, Vol. 1 (2001) pp. 813–820

    Google Scholar 

  50. D. Kragic, M. Madry, D. Song: From object categories to grasp transfer using probabilistic reasoning, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2012) pp. 1716–1723

    Google Scholar 

  51. A.T. Miller, S. Knoop, H.I. Christensen, P.K. Allen: Automatic grasp planning using shape primitives, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2003) pp. 1824–1829

    Google Scholar 

  52. K. Hübner, D. Kragic: Selection of robot pre-grasps using box-based shape approximation, IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2008) pp. 1765–1770

    Google Scholar 

  53. C. Dunes, E. Marchand, C. Collowet, C. Leroux: Active rough shape estimation of unknown objects, IEEE Int. Conf.Intell. RobotsSyst. (IROS) (2008) pp. 3622–3627

    Google Scholar 

  54. M. Przybylski, T. Asfour: Unions of balls for shape approximation in robot grasping, IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS), Taipei (2010) pp. 1592–1599

    Google Scholar 

  55. C. Goldfeder, P.K. Allen, C. Lackner, R. Pelossof: Grasp Planning Via Decomposition Trees, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2007) pp. 4679–4684

    Google Scholar 

  56. S. El-Khoury, A. Sahbani: Handling objects by their handles, IEEE/RSJ Int. Conf.Intell. RobotsSyst. WorkshopGraspTask Learn. Imitation (2008)

    Google Scholar 

  57. R. Pelossof, A. Miller, P. Allen, T. Jebera: An SVM learning approach to robotic grasping, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2004) pp. 3512–3518

    Google Scholar 

  58. A. Boularias, O. Kroemer, J. Peters: Learning robot grasping from 3-d images with markov random fields, IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2011) pp. 1548–1553

    Google Scholar 

  59. R. Detry, E. Başeski, N. Krüger, M. Popović, Y. Touati, O. Kroemer, J. Peters, J. Piater: Learning object-specific grasp affordance densities, IEEE Int. Conf.Dev.Learn. (2009) pp. 1–7

    Google Scholar 

  60. C. Papazov, S. Haddadin, S. Parusel, K. Krieger, D. Burschka: Rigid 3D geometry matching for grasping of known objects in cluttered scenes, Int. J.Robotics Res. 31(4), 538–553 (2012)

    Article  Google Scholar 

  61. J. Weisz, P.K. Allen: Pose error robust grasping from contact wrench space metrics, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2012) pp. 557–562

    Google Scholar 

  62. D. Song, C.H. Ek, K. Hübner, D. Kragic: Multivariate discretization for bayesian network structure learning in robot grasping, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2011) pp. 1944–1950

    Google Scholar 

  63. Z.C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, M. Beetz: General 3D modelling of novel objects from a single view, IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2010) pp. 3700–3705

    Google Scholar 

  64. D. Rao, V. Le Quoc, T. Phoka, M. Quigley, A. Sudsang, A.Y. Ng: Grasping novel objects with depth segmentation, IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS), Taipei (2010) pp. 2578–2585

    Google Scholar 

  65. J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal, N. Bergström, D. Kragic, A. Morales: Mind the gap – Robotic grasping under incomplete observation, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2011)

    Google Scholar 

  66. G.M. Bone, A. Lambert, M. Edwards: Automated Modelling and Robotic Grasping of Unknown Three-Dimensional Objects, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2008) pp. 292–298

    Google Scholar 

  67. K. Hsiao, S. Chitta, M. Ciocarlie, E.G. Jones: Contact-reactive grasping of objects with partial shape information, IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2010) pp. 1228–1235

    Google Scholar 

  68. M.A. Roa, M.J. Argus, D. Leidner, C. Borst, G. Hirzinger: Power grasp planning for anthropomorphic robot hands, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2012)

    Google Scholar 

  69. M. Richtsfeld, M. Vincze: Grasping of Unknown Objects from a Table Top, ECCV WorkshopVis.Action: Effic. Strateg.Cogn. AgentsComplex Environ. (2008)

    Google Scholar 

  70. A. Maldonado, U. Klank, M. Beetz: Robotic grasping of unmodeled objects using time-of-flight range data and finger torque information, IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2010) pp. 2586–2591

    Google Scholar 

  71. J. Stückler, R. Steffens, D. Holz, S. Behnke: Real-time 3d perception and efficient grasp planning for everyday manipulation tasks, Eur. Conf.Mob. Robots (ECMR) (2011)

    Google Scholar 

  72. G. Kootstra, M. Popovic, J.A. Jørgensen, K. Kuklinski, K. Miatliuk, D. Kragic, N. Kruger: Enabling grasping of unknown objects through a synergistic use of edge and surface information, Int. J.Robotics Res. 31(10), 1190–1213 (2012)

    Article  Google Scholar 

  73. D. Kraft, N. Pugeault, E. Baseski, M. Popovic, D. Kragic, S. Kalkan, F. Wörgötter, N. Krueger: Birth of the object: Detection of objectness and extraction of object shape through object action complexes, Int. J.Humanoid Robotics pp, 247–265 (2009)

    Google Scholar 

  74. O. Kroemer, E. Ugur, E. Oztop, J. Peters: A Kernel-based Approach to Direct Action Perception, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2012)

    Google Scholar 

  75. A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, T. Asfour, S. Schaal: Template-based learning of grasp selection, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2012)

    Google Scholar 

  76. L. Montesano, M. Lopes, A. Bernardino, J. Santos-Victor: Learning object affordances: From sensory–motor coordination to imitation, IEEE Trans.Robotics 24(1), 15–26 (2008)

    Article  Google Scholar 

  77. O. Faugeras: Three-Dimensional Computer Vision (MIT Press, Cambridge 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danica Kragic .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Google’s project Tango available from http://handbookofrobotics.org/view-chapter/32/videodetails/120

:

Finding paths through the world’s photos available from http://handbookofrobotics.org/view-chapter/32/videodetails/121

:

LIBVISO: Visual odometry for intelligent vehicles available from http://handbookofrobotics.org/view-chapter/32/videodetails/122

:

Parallel tracking and mapping for small AR workspaces (PTAM) available from http://handbookofrobotics.org/view-chapter/32/videodetails/123

:

DTAM: Dense tracking and mapping in real-time available from http://handbookofrobotics.org/view-chapter/32/videodetails/124

:

3-D models from 2-D video – automatically available from http://handbookofrobotics.org/view-chapter/32/videodetails/125

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kragic, D., Daniilidis, K. (2016). 3-D Vision for Navigation and Grasping. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics