Force and Tactile Sensing

  • Mark R. CutkoskyEmail author
  • William Provancher
Part of the Springer Handbooks book series (SHB)


This chapter provides an overview of force and tactile sensing, with the primary emphasis placed on tactile sensing. We begin by presenting some basic considerations in choosing a tactile sensor and then review a wide variety of sensor types, including proximity, kinematic, force, dynamic, contact, skin deflection, thermal, and pressure sensors. We also review various transduction methods, appropriate for each general sensor type. We consider the information that these various types of sensors provide in terms of whether they are most useful for manipulation, surface exploration or being responsive to contacts from external agents.

Concerning the interpretation of tactile information, we describe the general problems and present two short illustrative examples. The first involves intrinsic tactile sensing, i. e., estimating contact locations and forces from force sensors. The second involves contact pressure sensing, i. e., estimating surface normal and shear stress distributions from an array of sensors in an elastic skin. We conclude with a brief discussion of the challenges that remain to be solved in packaging and manufacturing damage-tolerant tactile sensors.


Contact Force Force Sensor Humanoid Robot Tactile Sensor Contact Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



charge-coupled device


complementary metal-oxide-semiconductor


degree of freedom


force sensing resistor




microelectromechanical system


personal computer


position sensing device


polyvinylidene fluoride


resistance temperature devices


scanning electron microscope


  1. 28.1
    M.I. Tiwana, S.J. Redmond, N.H. Lovell: A review of tactile sensing technologies with applications in biomedical engineering, Sens. Actuators A Phys. 179, 17–31 (2012)CrossRefGoogle Scholar
  2. 28.2
    H. Yousef, M. Boukallel, K. Althoefer: Tactile sensing for dexterous in-hand manipulation in robotics – A review, Sens. Actuators A Phys. 167(2), 171–187 (2011)CrossRefGoogle Scholar
  3. 28.3
    R.S. Dahiya, G. Metta, M. Valle, G. Sandini: Tactile sensing – From humans to humanoids, IEEE Trans. Robotics 26(1), 1–20 (2010)CrossRefGoogle Scholar
  4. 28.4
    C. Lucarotti, C.M. Oddo, N. Vitiello, M.C. Carrozza: Synthetic and bio-artificial tactile sensing: A review, Sensors 13(2), 1435–1466 (2013)CrossRefGoogle Scholar
  5. 28.5
    M.H. Lee: Tactile sensing: new directions, new challenges, Int. J. Robotic Res. 19(7), 636–643 (2000)Google Scholar
  6. 28.6
    M.H. Lee, H.R. Nicholls: Tactile sensing for mechatronics-a state of the art survey, Mechatronics 9(1), 1–31 (1999)CrossRefGoogle Scholar
  7. 28.7
    L.D. Harmon: Automated tactile sensing, Int. J. Robotics Res. 1(2), 3–32 (1982)CrossRefGoogle Scholar
  8. 28.8
    J.-P. Uldry, R.A. Russell: Developing conductive elastomers for applications in robotic tactile sensing, Adv. Robotics 6(2), 255–271 (1992)CrossRefGoogle Scholar
  9. 28.9
    T.V. Papakostas, J. Lima, M. Lowe: A large area force sensor for smart skin applications, Proc. IEEE Sens., Vol. 2 (2002) pp. 1620–1624CrossRefGoogle Scholar
  10. 28.10
    M. Shimojo, A. Namiki, M. Ishikawa, R. Makino, K. Mabuchi: A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method, IEEE Sens. J. 4(5), 589–596 (2004)CrossRefGoogle Scholar
  11. 28.11
    D. De Rossi, A. Della Santa, A. Mazzoldi: Dressware: wearable piezo- and thermoresistive fabrics for ergonomics and rehabilitation, Proc. 19th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Vol. 5 (1997) pp. 1880–1883Google Scholar
  12. 28.12
    A. Tognetti, F. Lorussi, M. Tesconi, D. De Rossi: Strain sensing fabric characterization, Proc. IEEE Sens., Vol. 1 (2004) pp. 527–530Google Scholar
  13. 28.13
    R.S. Fearing, T.O. Binford: Using a cylindrical tactile sensor for determining curvature, IEEE Trans. Robotics Autom. 7(6), 806–817 (1991)CrossRefGoogle Scholar
  14. 28.14
    Pressure Profile Systems:
  15. 28.15
    H.-K. Lee, S.-I. Chang, E. Yoon: A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment, J. Microelectromechanical Syst. 15(6), 1681–1686 (2006)CrossRefGoogle Scholar
  16. 28.16
    T. Hoshi, H. Shinoda: A sensitive skin based on touch-area-evaluating tactile elements, Proc. 14th Symp. Haptic Interfaces Virtual Env. Teleoperator Syst. (2006) pp. 89–94CrossRefGoogle Scholar
  17. 28.17
    P. Maiolino, M. Maggiali, G. Cannata, G. Metta, L. Natale: A flexible and robust large scale capacitive tactile system for robots, IEEE Sens. J. 13(10), 3910–3917 (2013)CrossRefGoogle Scholar
  18. 28.18
    T. Sekitani, M. Takamiya, Y. Noguchi, S. Nakano, Y. Kato, T. Sakurai, T. Someya: A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches, Nat. Mater. 6(6), 413–417 (2007)CrossRefGoogle Scholar
  19. 28.19
    R.S. Dahiya, D. Cattin, A. Adami, C. Collini, L. Barboni, M. Valle, L. Lorenzelli, R. Oboe, G. Metta, F. Brunetti: Towards tactile sensing system on chip for robotic applications, IEEE Sens. J. 11(12), 3216–3226 (2011)CrossRefGoogle Scholar
  20. 28.20
    K. Takei, T. Takahashi, J.C. Ho, H. Ko, A.G. Gillies, P.W. Leu, R.S. Fearing, A. Javey: Nanowire active-matrix circuitry for low-voltage macroscale artificial skin, Nat. Mater. 9(10), 821–826 (2010)CrossRefGoogle Scholar
  21. 28.21
    K. Kamiyama, H. Kajimoto, N. Kawakami, S. Tachi: Evaluation of a vision-based tactile sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2004) pp. 1542–1547Google Scholar
  22. 28.22
    M. Quigley, C. Salisbury, A.Y. Ng, J.K. Salisbury: Mechatronic design of an integrated robotic hand, Int. J. Robobotics Res. 33(5), 706–720 (2014)CrossRefGoogle Scholar
  23. 28.23
    N.J. Ferrier, R.W. Brockett: Reconstructing the shape of a deformable membrane from image data, Int. J. Robotics Res. 19(9), 795–816 (2000)CrossRefGoogle Scholar
  24. 28.24
    C.H. Lin, T.W. Erickson, J.A. Fishel, N. Wettels, G.E. Loeb: Signal processing and fabrication of a biomimetic tactile sensor array with thermal, force and microvibration modalities, Proc. IEEE Int. Conf. Robotics Biomim. (ROBIO) (2009) pp. 129–134Google Scholar
  25. 28.25
    W.C. Nowlin: Experimental results on Bayesian algorithms for interpreting compliant tactile sensing data, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1991) pp. 378–383Google Scholar
  26. 28.26
    R.A. Russell, S. Parkinson: Sensing surface shape by touch, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1993) pp. 423–428CrossRefGoogle Scholar
  27. 28.27
    R.A. Russell: Compliant-skin tactile sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 1645–1648Google Scholar
  28. 28.28
    W.R. Provancher, M.R. Cutkosky: Sensing local geometry for dexterous manipulation, Proc. Intl. Symp. Exp. Robotics (2002) pp. 507–516Google Scholar
  29. 28.29
    P. Dario, R. Lazzarini, R. Magni, S.R. Oh: An integrated miniature fingertip sensor, Proc. 7th Int. Symp. Micro Mach. Hum. Sci. (1996) pp. 91–97CrossRefGoogle Scholar
  30. 28.30
    R.D. Howe, M.R. Cutkosky: Dynamic tactile sensing: perception of fine surface features with stress rate sensing, IEEE Trans. Robotics Autom. 9(2), 140–151 (1993)CrossRefGoogle Scholar
  31. 28.31
    R.D. Howe, M.R. Cutkosky: Sensing skin acceleration for texture and slip perception, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1989) pp. 145–150Google Scholar
  32. 28.32
    J.M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, K.J. Kuchenbecker: Human-inspired robotic grasp control with tactile sensing, IEEE Trans. Robotics 27(6), 1067–1079 (2011)CrossRefGoogle Scholar
  33. 28.33
    J. Lee, S.N. Sponberg, O.Y. Loh, A.G. Lamperski, R.J. Full, N.J. Cowan: Templates and anchors for antenna-based wall following in cockroaches and robots, IEEE Trans. Robotics 24(1), 130–143 (2008)CrossRefGoogle Scholar
  34. 28.34
    T.J. Prescott, M.J. Pearson, B. Mitchinson, J.C. Sullivan, A. Pipe: Whisking with robots: from rat vibrissae to biomimetic technology for active touch, IEEE Robotics Autom. Mag. 16(3), 42–50 (2009)CrossRefGoogle Scholar
  35. 28.35
    R.A. Russell: Using tactile whiskers to measure surface contours, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992) pp. 1295–1299Google Scholar
  36. 28.36
    M. Kaneko, N. Kanayama, T. Tsuji: Active antenna for contact sensing, IEEE Trans. Robotics Autom. 14(2), 278–291 (1998)CrossRefGoogle Scholar
  37. 28.37
    T.N. Clements, C.D. Rahn: Three-dimensional contact imaging with an actuated whisker, IEEE Trans. Robotics 22(4), 844–848 (2006)CrossRefGoogle Scholar
  38. 28.38
    T.J. Prescott, M.J. Pearson, B. Mitchinson, J.C. Sullivan, A. Pipe: Tactile discrimination using active whisker sensors, IEEE Sens. J. 12(2), 350–362 (2012)CrossRefGoogle Scholar
  39. 28.39
    J.M. Vranish, R.L. McConnell, S. Mahalingam: Capaciflector collision avoidance sensors for robots, Comput. Electr. Eng. 17(3), 173–179 (1991)CrossRefGoogle Scholar
  40. 28.40
    E. Cheung, V. Lumelsky: A sensitive skin system for motion control of robot arm manipulators, Robotics Auton. Syst. 10(1), 9–32 (1992)CrossRefGoogle Scholar
  41. 28.41
    D. Um, V. Lumelsky: Fault tolerance via component redundancy for a modularized sensitive skin, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 722–727Google Scholar
  42. 28.42
    S. Walker, K. Loewke, M. Fischer, C. Liu, J.K. Salisbury: An optical fiber proximity sensor for haptic exploration, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 473–478Google Scholar
  43. 28.43
    P. Wei, L. Zhizeng: A design of miniature strong anti-jamming proximity sensor, Proc. Int. Conf. Comp. Sci. Electron. Eng. (ICCSEE) (2012) pp. 327–331Google Scholar
  44. 28.44
    E. Guglielmelli, V. Genovese, P. Dario, G. Morana: Avoiding obstacles by using a proximity US/IR sensitive skin, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1993) pp. 2207–2214Google Scholar
  45. 28.45
    D. Wegerif, D. Rosinski: Sensor based whole arm obstacle avoidance for kinematically redundant robots, Proc. SPIE – Int. Soc. Opt. Eng. 1828, 417–426 (1992)Google Scholar
  46. 28.46
    G. Buttazzo, P. Dario, R. Bajcsy: Finger based explorations, Proc. SPIE 0726, Intell. Robots Comput. Vis. V, ed. by D.P. Casadent (1986) pp. 338–345Google Scholar
  47. 28.47
    D. Siegel, I. Garabieta, J. Hollerbach: An integrated tactile and thermal sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 1286–1291Google Scholar
  48. 28.48
    R.A. Russell: A thermal sensor array to provide tactile feedback for robots, Int. J. Robotics Res. 5(3), 35–39 (1985)CrossRefGoogle Scholar
  49. 28.49
    F. Castelli: An integrated tactile-thermal robot sensor with capacitive tactile array, IEEE Trans. Ind. Appl. 38(1), 85–90 (2002)CrossRefGoogle Scholar
  50. 28.50
    D.G. Caldwell, C. Gosney: Enhanced tactile feedback (Tele-taction) using a multi-functional sensory system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) 1, 955–960 (1993)CrossRefGoogle Scholar
  51. 28.51
    G.J. Monkman, P.M. Taylor: Thermal tactile sensing, IEEE Trans. Robotics Autom. 9(3), 313–318 (1993)CrossRefGoogle Scholar
  52. 28.52
    J. Engel, J. Chen, X. Wang, Z. Fan, C. Liu, D. Jones: Technology development of integrated multi-modal and flexible tactile skin for robotics applications, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2003) pp. 2359–2364Google Scholar
  53. 28.53
    P. Bergveld: Development and application of chemical sensors in liquids. In: Sensors and Sensory Systems for Advanced Robots, NATO ASI Series, Vol. 43, ed. by P. Dario (Springer, Berlin, Heidelberg 1988) pp. 397–414CrossRefGoogle Scholar
  54. 28.54
    T. Nakamoto, A. Fukuda, T. Moriizumi: Perfume and flavor identification by odor sensing system using quartz-resonator sensor array and neural-network pattern recognition, Proc. 6th Int. Conf. Solid-State Sens. Actuators (TRANSDUCERS '91) (1991)Google Scholar
  55. 28.55
    R.A. Russell: Survey of robotic applications for odor-sensing technology, Int. J. Robotics Res. 20(2), 144–162 (2001)CrossRefGoogle Scholar
  56. 28.56
    A.J. Lilienthal, A. Loutfi, T. Duckett: Airborne chemical sensing with mobile robots, Sensors 6(11), 1616–1678 (2006)CrossRefGoogle Scholar
  57. 28.57
    B.A. Auld, A.J. Bahr: A novel multifunction robot sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 1791–1797Google Scholar
  58. 28.58
    H. Clergeot, D. Placko, J.M. Detriche: Electrical proximity sensors. In: Sensors and Sensory Systems for Advanced Robots, NATO ASI Series, Vol. 43, ed. by P. Dario (Springer, Berlin, Heidelberg 1988) pp. 295–308CrossRefGoogle Scholar
  59. 28.59
    M. Kaneko, K. Tanie: Contact point detection for grasping of an unknown object using self-posture changeability (SPC), IEEE Trans. Robotics Autom., Vol. 10 (1994) pp. 355–367Google Scholar
  60. 28.60
    A.M. Dollor, L.P. Jentoft, J.H. Cao, R.D. Howe: Contact sensing and grasping performance of compliant hands, Auton. Robots 28(1), 65–75 (2010)CrossRefGoogle Scholar
  61. 28.61
    J.K. Salisbury: Appendix to kinematic and force analysis of articulated hands. In: Robot Hands and the Mechanics of manipulation, ed. by M.T. Mason, J.K. Salisbury (MIT Press, Cambridge 1985)Google Scholar
  62. 28.62
    G. Palli, C. Melchiorri, G. Vassura, U. Scarcia, L. Moriello, G. Berselli, A. Cavallo, G. De Maria, C. Natale, S. Pirozzi, C. May, F. Ficuciello, B. Siciliano: The DEXMART hand: Mechatronic design and experimental evaluation of synergy-based control for human-like grasping, Int. J. Robotics Res. 33(5), 799–824 (2014)CrossRefGoogle Scholar
  63. 28.63
    A. Pugh (Ed.): Robot Sensors, Volume 2: Tactile and Non-Vision (IFS Publ./Springer, New York 1986)Google Scholar
  64. 28.64
    J.G. Webster: Tactile Sensors for Robotics and Medicine (Wiley, New York 1988)Google Scholar
  65. 28.65
    J.K. Salisbury: Interpretation of contact geometries from force measurements. In: Robotics Res. First Int. Symp, ed. by M. Brady, R.P. Paul (MIT Press, Cambridge 1984)Google Scholar
  66. 28.66
    D. Brock, S. Chiu: Environment perception of an articulated robot hand using contact sensors, ASME Winter Annu. Meet. Robotics Manuf. Automa., Vol. 15 (1985) pp. 89–96Google Scholar
  67. 28.67
    J. Butterfass, M. Grebenstein, H. Liu, G. Hirzinger: DLR-Hand II: next generation of a dextrous robot hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (2001) pp. 109–114Google Scholar
  68. 28.68
    F.W. Sinden, R.A. Boie: A planar capacitive force sensor with six degrees of freedom, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 1806–1813Google Scholar
  69. 28.69
    B.B. Edin, L. Beccai, L. Ascari, S. Roccella, J.J. Cabibihan, M.C. Carrozza: A bio-inspired approach for the design and characterization of a tactile sensory system for a cybernetic prosthetic hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 1354–1358Google Scholar
  70. 28.70
    Y.-L. Park, S.C. Ryu, R.J. Black, K.K. Chau, B. Moslehi, M.R. Cutkosky: Exoskeletal force-sensing end-effectors with embedded optical fiber-bragg-grating sensors, IEEE Trans. Robotics 25(6), 1319–1331 (2009)CrossRefGoogle Scholar
  71. 28.71
    A. Bicchi: A criterion for optimal design of multiaxis force sensors, Robotics Auton. Syst. 10(4), 269–286 (1992)CrossRefGoogle Scholar
  72. 28.72
    M. Uchiyama, E. Bayo, E. Palma-Villalon: A mathematical approach to the optimal structural design of a robot force sensor, Proc. USA-Japan Symp. Flexible Automation (1998) pp. 539–546Google Scholar
  73. 28.73
    A. Bicchi, J.K. Salisbury, P. Dario: Augmentation of grasp robustness using intrinsic tactile sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1989) pp. 302–307Google Scholar
  74. 28.74
    J.S. Son, M.R. Cutkosky, R.D. Howe: Comparison of contact sensor localization abilities during manipulation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 2 (1995) pp. 96–103Google Scholar
  75. 28.75
    R.S. Johansson, J.R. Flanagan: Coding and use of tactile signals from the fingertips in object manipulation tasks, Nat. Rev. Neurosci. 10(5), 345–359 (2009)CrossRefGoogle Scholar
  76. 28.76
    M. Ueda: Tactile sensors for an industrial robot to detect a slip, Proc. 2nd Int. Symp. Ind. Robots (1972) pp. 63–70Google Scholar
  77. 28.77
    R. Matsuda: Slip sensor of industrial robot and its application, Electric. Eng. Jap. 96(5), 129–136 (1976)CrossRefGoogle Scholar
  78. 28.78
    J. Rebman, J.-E. Kallhammer: A Search for Precursors of Slip in Robotic Grasp, Intelligent Robots and Computer Vision: Fifth in a Series, Cambridge, ed. by E. Casaent (1986) pp. 329–337Google Scholar
  79. 28.79
    P. Dario, D. De Rossi: Tactile sensors and the gripping challenge, IEEE Spectrum 22(8), 46–52 (1985)CrossRefGoogle Scholar
  80. 28.80
    R.W. Patterson, G.E. Nevill: The induced vibration touch sensor – A new dynamic touch sensing concept, Robotica 4(01), 27–31 (1986)CrossRefGoogle Scholar
  81. 28.81
    M.R. Cutkosky, J. Ulmen: Dynamic Tactile Sensing. In: The Human Hand as an Inspiration for Robot Hand Development, Springer Tracts in Advanced Robotics 95, ed. by R. Balasubramanian, V.J. Santos (Springer, Cham 2014) pp. 389–403CrossRefGoogle Scholar
  82. 28.82
    D. Dornfeld, C. Handy: Slip detection using acoustic emission signal analysis, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (1987) pp. 1868–1875Google Scholar
  83. 28.83
    X.A. Wu, N. Burkhard, B. Heyneman, R. Valen, M.R. Cutkosky: Contact event detection for robotic oil drilling, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2014) pp. 2255–2261Google Scholar
  84. 28.84
    S. Omata: Real time robotic tactile sensor system for the determination of the physical properties of biomaterials, Sens. Actuators A Phys. 112(2/3), 278–285 (2004)CrossRefGoogle Scholar
  85. 28.85
    S.B. Backus, A.M. Dollar: Robust resonant frequency-based contact detection with applications in robotic reaching and grasping, IEEE/ASME Trans. Mechatron. 19(5), 1552–1561 (2014)CrossRefGoogle Scholar
  86. 28.86
    M.R. Tremblay, M.R. Cutkosky: Estimating friction using incipient slip sensing during a manipulation task, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1993) pp. 429–434CrossRefGoogle Scholar
  87. 28.87
    E.G.M. Holweg, H. Hoeve, W. Jongkind, L. Marconi, C. Melchiorri, C. Bonivento: Slip detection by tactile sensors: Algorithms and experimental results, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1996) pp. 3234–3239CrossRefGoogle Scholar
  88. 28.88
    I. Fujimoto, Y. Yamada, T. Maeno, T. Morizono, Y. Umetani: Identification of incipient slip phenomena based on the circuit output signals of PVDF film strips embedded in artificial finger ridges, Trans. Soc. Instrum. Control Eng. 40(6), 648–655 (2004)CrossRefGoogle Scholar
  89. 28.89
    B. Choi, H.R. Choi, S. Kang: Development of tactile sensor for detecting contact force and slip, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 2638–2643Google Scholar
  90. 28.90
    P.A. Schmidt, E. Maël, R.P. Würtz: A sensor for dynamic tactile information with applications in human–robot interaction and object exploration, Robotics Auton. Syst. 54(12), 1005–1014 (2006)CrossRefGoogle Scholar
  91. 28.91
    R.D. Howe: Tactile sensing and control of robotic manipulation, Adv. Robotics 8(3), 245–261 (1993)CrossRefGoogle Scholar
  92. 28.92
    C. Melchiorri: Slip detection and control using tactile and force sensors, IEEE/ASME Trans. Mechatron. 5(3), 235–243 (2000)CrossRefGoogle Scholar
  93. 28.93
    C.M. Oddo, L. Beccai, G.G. Muscolo, M.C. Carrozza: A biomimetic MEMS-based tactile sensor array with fingerprints integrated in a robotic fingertip for artificial roughness encoding, Proc. IEEE Int. Conf. Robotics Biomim. (2009) pp. 894–900Google Scholar
  94. 28.94
    A. Schmitz, M. Maggiali, L. Natale, B. Bonino, G. Metta: A tactile sensor for the fingertips of the humanoid robot iCub, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2010) pp. 2212–2217Google Scholar
  95. 28.95
    L.P. Jentoft, Y. Tenzer, D. Vogt, R.J. Wood, R.D. Howe: Flexible, stretchable tactile arrays from MEMS barometers, Proc. 16th Int. Conf. Adv. Robotics (2013) pp. 1–6Google Scholar
  96. 28.96
    R.S. Fearing, J.M. Hollerbach: Basic solid mechanics for tactile sensing, Int. J. Robotics Res. 4(3), 40–54 (1985)CrossRefGoogle Scholar
  97. 28.97
    W. Griffin, W.M. Provancher, M.R. Cutkosky: Feedback strategies for telemanipulation with shared control of object handling forces, Presence Teleoperations Virtual Environ. 14(6), 720–731 (2005)CrossRefGoogle Scholar
  98. 28.98
    H. Maekawa, K. Tanie, K. Komoriya, M. Kaneko, C. Horiguchi, T. Sugawara: Development of a finger-shaped tactile sensor and its evaluation by active touch, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (1992) pp. 1327–1334Google Scholar
  99. 28.99
    R.S. Fearing: Tactile sensing mechanisms, Int. J. Robotics Res. 9(3), 3–23 (1987)CrossRefGoogle Scholar
  100. 28.100
    G. Cannata, M. Maggiali, G. Metta, G. Sandini: An embedded artificial skin for humanoid robots, Proc. IEEE Int. Conf. Muiltisens. Fusion Integr. Intell. Syst. (2008) pp. 434–438Google Scholar
  101. 28.101
    M.-Y. Cheng, X.-H. Huang, C.-W. Ma, Y.-J. Yang: A flexible capacitive tactile sensing array with floating electrodes, J. Micromechanics Microengineering 19(11), 115001 (2009)CrossRefGoogle Scholar
  102. 28.102
    Y. Hasegawa, M. Shikida, D. Ogura, Y. Suzuki, K. Sato: Fabrication of a wearable fabric tactile sensor produced by artificial hollow fiber, J. Micromechanics Microengineering 18(8), 085014 (2008)CrossRefGoogle Scholar
  103. 28.103
    D. McConnell Aukes, M.R. Cutkosky, S. Kim, J. Ulmen, P. Garcia, H. Stuart, A. Edsinger: Design and testing of a selectively compliant underactuated hand, Int. J. Robotics Res. 33(5), 721–735 (2014)CrossRefGoogle Scholar
  104. 28.104
    O. Kerpa, K. Weiss, H. Worn: Development of a flexible tactile sensor system for a humanoid robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003) pp. 1–6Google Scholar
  105. 28.105
    D. Bloor, A. Graham, E.J. Williams, P.J. Laughlin, D. Lussey: Metal–polymer composite with nanostructured filler particles and amplified physical properties, Appl. Phys. Lett. 88(10), 102103 (2006)CrossRefGoogle Scholar
  106. 28.106
    Peratech: Peratech QTC, (2014)
  107. 28.107
    T. Someya: Integration of organic field-effect transistors and rubbery pressure sensors for artificial skin applications, Proc. IEEE Int. Electron. Dev. Meet. (2003) pp. 8–14Google Scholar
  108. 28.108
    H. Alirezaei, A. Nagakubo, Y. Kuniyoshi: A tactile distribution sensor which enables stable measurement under high and dynamic stretch, Proc. IEEE Symp. 3D User Interfaces (2009) pp. 87–93Google Scholar
  109. 28.109
    Y.-L. Park, B.-R. Chen, R.J. Wood: Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors, IEEE Sens. J. 12(8), 2711–2718 (2012)CrossRefGoogle Scholar
  110. 28.110
    R. Kageyama, S. Kagami, M. Inaba, H. Inoue: Development of soft and distributed tactile sensors and the application to a humanoid robot, Proc. IEEE Int. Conf. Syst. Man Cybern., Vol. 2 (1999) pp. 981–986Google Scholar
  111. 28.111
    B.J. Kane, M.R. Cutkosky, G.T.A. Kovacs: A traction stress sensor array for use in high-resolution robotic tactile imaging, J. Microelectromechanical Syst. 9(4), 425–434 (2000)CrossRefGoogle Scholar
  112. 28.112
    H. Takao, K. Sawada, M. Ishida: Monolithic silicon smart tactile image sensor with integrated strain sensor array on pneumatically swollen single-diaphragm structure, IEEE Trans. Electron. Dev. 53(5), 1250–1259 (2006)CrossRefGoogle Scholar
  113. 28.113
    K. Noda, I. Shimoyama: A Shear stress sensing for robot hands -Orthogonal arrayed piezoresistive cantilevers standing in elastic material-, Proc. 14th Symp. Haptic Interfaces Virtual Env. Teleoperator Syst. (2006) pp. 63–66CrossRefGoogle Scholar
  114. 28.114
    M.-Y. Cheng, C.-L. Lin, Y.-J. Yang: Tactile and shear stress sensing array using capacitive mechanisms with floating electrodes, 2010 IEEE 23rd Int. Conf. Micro Electro Mech. Syst. (2010) pp. 228–231Google Scholar
  115. 28.115
    P. Valdastri, S. Roccella, L. Beccai, E. Cattin, A. Menciassi, M.C. Carrozza, P. Dario: Characterization of a novel hybrid silicon three-axial force sensor, Sens. Actuators A 123/124, 249–257 (2005)CrossRefGoogle Scholar
  116. 28.116
    S.C.B. Mannsfeld, B.C.-K. Tee, R.M. Stoltenberg, C.V.H.H. Chen, S. Barman, B.V.O. Muir, A.N. Sokolov, C. Reese, Z. Bao: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers, Nat. Mater. 9(10), 859–864 (2010)CrossRefGoogle Scholar
  117. 28.117
    R. Brockett: Robotic hands with rheological surfaces, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1985) pp. 942–946Google Scholar
  118. 28.118
    K.B. Shimoga, A.A. Goldenberg: Soft robotic fingertips. I. A comparison of construction materials, Int. J. Rob, Res. 15(4), 320–350 (1996)Google Scholar
  119. 28.119
    A. Mazid, R. Russell: A robotic opto-tactile sensor for assessing object surface texture, IEEE Conf. Robotics Autom. Mechatronics (2006) pp. 1–5Google Scholar
  120. 28.120
    L.S. Lincoln, S.J.M. Bamberg, E. Parsons, C. Salisbury, J. Wheeler: An elastomeric insole for 3-axis ground reaction force measurement, Proc. IEEE RAS/EMBS Int. Conf. Biomedical Robotics Biomech. (2012) pp. 1512–1517Google Scholar
  121. 28.121
    H. Shinoda, K. Matsumoto, S. Ando: Acoustic resonant tensor cell for tactile sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1997) pp. 3087–3092CrossRefGoogle Scholar
  122. 28.122
    H. Shinoda, S. Sasaki, K. Nakamura: Instantaneous evaluation of friction based on ARTC tactile sensor, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (2000) pp. 2173–2178Google Scholar
  123. 28.123
    S. Ando, H. Shinoda, A. Yonenaga, J. Terao: Ultrasonic six-axis deformation sensing, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48(4), 1031–1045 (2001)CrossRefGoogle Scholar
  124. 28.124
    P. Dario, D. De Rossi, C. Domenici, R. Francesconi: Ferroelectric polymer tactile sensors with anthropomorphic features, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1984) pp. 332–340Google Scholar
  125. 28.125
    D.M. Siegel: Contact sensors for dextrous robotic hands, MIT Artificial Intelligence Laboratory Tech. Rep., no. 900 (MIT Press, Cambridge 1986)Google Scholar
  126. 28.126
    J.S. Son, E.A. Monteverde, R.D. Howe: A tactile sensor for localizing transient events in manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1 (1994) pp. 471–476Google Scholar
  127. 28.127
    B.S. Eberman, J.K. Salisbury: Determination of Manipulator Contact Information from Joint Torque Measurements. In: Experimental Robotics I, The First International Symposium, ed. by V. Hayward, O. Khatib (Springer, Montreal 1990)Google Scholar
  128. 28.128
    A. Bicchi: Intrinsic contact sensing for soft fingers, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1990) pp. 968–973CrossRefGoogle Scholar
  129. 28.129
    P. Dario: Tactile sensing for robots: Present and future. In: The Robotics Review 1, ed. by O. Khatib, J. Craig, T. Lozano-Perez (MIT Press, Cambridge 1989) pp. 133–146Google Scholar
  130. 28.130
    J.R. Phillips, K.O. Johnson: Tactile spatial resolution III: A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges and gratings, J. Neurophysiol. 46(6), 1204–1225 (1981)Google Scholar
  131. 28.131
    T. Speeter: A tactile sensing system for robotic manipulation, Int. J. Robotics Res. 9(6), 25–36 (1990)CrossRefGoogle Scholar
  132. 28.132
    K.L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge 1985)zbMATHCrossRefGoogle Scholar
  133. 28.133
    S. Timoshenko, J.N.N. Goodier: Theory of Elasticity (McGraw-Hill, New York 1951)zbMATHGoogle Scholar
  134. 28.134
    G. Kenaly, M. Cutkosky: Electrorheological fluid-based fingers with tactile sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 132–136Google Scholar
  135. 28.135
    R.D. Howe: Dynamic Tactile Sensing, Ph.D. Thesis (Stanford University, Stanford 1990)Google Scholar
  136. 28.136
    R.M. Voyles, B.L. Stavnheim, B. Yap: Practical electrorheological fluid-based fingers for robotic applications, IASTED Int. Symp. Robotics Manuf. (1989)Google Scholar
  137. 28.137
    J.J. Clark: A magnetic field based compliance matching sensor for high resolution, high compliance tactile sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 772–777Google Scholar
  138. 28.138
    T.H. Speeter: Analysis and Control of Robotic Manipulation, Ph.D. Thesis (Case Western Reserve University, Cleveland 1987)Google Scholar
  139. 28.139
    R. Fearing: Tactile sensing for shape interpretation. In: Dextrous Robot Hands, ed. by S.T. Venkataraman, T. Iberall (Springer, Berlin, Heidelberg 1990) pp. 209–238CrossRefGoogle Scholar
  140. 28.140
    A.J. Worth, R.R. Spencer: A neural network for tactile sensing: The hertzian contact problem, Proc. Int. Jt. Conf. Neural Netw. (1989) pp. 267–274CrossRefGoogle Scholar
  141. 28.141
    W.E.L. Grimson, T. Lozano-Perez: Model-based recognition and localization from sparse range or tactile data, Int. J. Robotics Res. 3(3), 3–35 (1984)CrossRefGoogle Scholar
  142. 28.142
    P.C. Gaston, T. Lozano-Perez: Tactile recognition and localization using object models: The case of polyhedra on a plane, Proc. IEEE Trans. Pattern Anal. Mach. Intell. (1984) pp. 257–266Google Scholar
  143. 28.143
    J.L. Schneiter: An objective sensing strategy for object recognition and localization, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 1262–1267Google Scholar
  144. 28.144
    R. Cole, C. Yap: Shape from probing, J. Algorithm. 8(1), 19–38 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  145. 28.145
    P.K. Allen: Mapping haptic exploratory procedures to multiple shape representations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1990) pp. 1679–1684CrossRefGoogle Scholar
  146. 28.146
    R.E. Ellis: Extraction of tactile features by passive and active sensing, Proc. SPIE 0521 (1985) p. 289Google Scholar
  147. 28.147
    S.J. Lederman, R. Browse: The physiology and psychophysics of touch. In: Sensors and Sensory Systems for Advanced Robotics, ed. by P. Dario (Springer, Berlin, Heidelberg 1986) pp. 71–91Google Scholar
  148. 28.148
    H. Ozaki, S. Waku, A. Mohri, M. Takata: Pattern recognition of a grasped object by unit-vector distribution, IEEE Trans. Syst. Man Cybern. 12(3), 315–324 (1982)CrossRefGoogle Scholar
  149. 28.149
    R.L. Klatzky, R. Bajcsy, S.J. Lederman: Object exploration in one and two fingered robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 1806–1809Google Scholar
  150. 28.150
    D. Siegel: Finding the pose of an object in the hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1991) pp. 406–411Google Scholar
  151. 28.151
    D. Taddeucci, C. Laschi, R. Lazzarini, R. Magni, P. Dario, A. Starita: An approach to integrated tactile perception, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1997) pp. 3100–3105CrossRefGoogle Scholar
  152. 28.152
    A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, W. Burgard: Object identification with tactile sensors using bag-of-features, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 243–248Google Scholar
  153. 28.153
    N. Gorges, S.E. Navarro, D. Göger, H. Wörn: Haptic object recognition using passive joints and haptic key features, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 2349–2355Google Scholar
  154. 28.154
    Y. Bekiroglu, J. Laaksonen, J.A. Jorgensen, V. Kyrki, D. Kragic: Assessing grasp stability based on learning and haptic data, IEEE Trans. Robotics 27(3), 616–629 (2011)CrossRefGoogle Scholar
  155. 28.155
    V.S. Gurfinkel: Tactile sensitizing of manipulators, Eng. Cybern. 12(6), 47–56 (1974)Google Scholar
  156. 28.156
    R. Ellis: Acquiring tactile data for the recognition of planar objects, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (1987) pp. 1799–1805Google Scholar
  157. 28.157
    A. Cameron: Optimal tactile sensor placement, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 308–313Google Scholar
  158. 28.158
    P. Dario: Sensing body structures by an advanced robot system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1988) pp. 1758–1763Google Scholar
  159. 28.159
    S.A.A. Stansfield: Robotic grasping of unknown objects: A knowledge-based approach, Int. J. Robotics Res. 10(4), 314–326 (1991)CrossRefGoogle Scholar
  160. 28.160
    A. Petrovskaya, O. Khatib: Global localization of objects via touch, IEEE Trans. Robotics 27(3), 569–585 (2011)CrossRefGoogle Scholar
  161. 28.161
    N.F. Lepora, U. Martinez-Hernandez, H. Barron-Gonzalez, M. Evans, G. Metta, T.J. Prescott: Embodied hyperacuity from Bayesian perception: Shape and position discrimination with an iCub fingertip sensor, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 4638–4643Google Scholar
  162. 28.162
    C. Muthukrishnan, D. Smith, D. Meyers, J. Rebman, A. Koivo: Edge detection in tactile images, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 1500–1505Google Scholar
  163. 28.163
    A.D. Berger, P.K. Khosla: Using tactile data for real-time feedback, Int. J. Robotics Res. 10(2), 88–102 (1991)CrossRefGoogle Scholar
  164. 28.164
    K. Pribadi, J.S. Bay, H. Hemami: Exploration and dynamic shape estimation by a robotic probe, IEEE Trans. Syst. Man Cybern. 19(4), 840–846 (1989)CrossRefGoogle Scholar
  165. 28.165
    H. Zhang, N.N. Chen: Control of contact via tactile sensing, IEEE Trans. Robotics Autom. 16(5), 482–495 (2000)CrossRefGoogle Scholar
  166. 28.166
    A.M. Okamura, M.R. Cutkosky: Feature detection for haptic exploration with robotic fingers, Int. J. Robotics Res. 20(12), 925–938 (2001)CrossRefGoogle Scholar
  167. 28.167
    K. Suwanratchatamanee, M. Matsumoto, S. Hashimoto: Robotic tactile sensor system and applications, IEEE Trans. Ind. Electron. 57(3), 1074–1087 (2010)CrossRefGoogle Scholar
  168. 28.168
    K. Yamada, K. Goto, Y. Nakajima, N. Koshida, H. Shinoda: A sensor skin using wire-free tactile sensing elements based on optical connection, Proc. 41st SICE Annu. Conf., Vol. 1 (2002) pp. 131–134Google Scholar
  169. 28.169
    M. Schoepfer, C. Schuermann, M. Pardowitz, H. Ritter: Using a piezo-resistive tactile sensor for detection of incipient slippage, Proc. ISR/ROBOTIK 41st Int. Symp. Robotics (2010) pp. 14–20Google Scholar
  170. 28.170
    B. Heyneman, M.R. Cutkosky: Slip interface classification through tactile signal coherence, IEEE/RSJ IEEE Int. Conf. Intell. Robots Syst. (IROS) (2013) pp. 801–808Google Scholar
  171. 28.171
    P. Dario, P. Ferrante, G. Giacalone, L. Livaldi, B. Allotta, G. Buttazzo, A.M. Sabatini: Planning and executing tactile exploratory procedures, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (1992) pp. 1896–1903Google Scholar
  172. 28.172
    S.C. Jacobsen, J.E. Wood, D.F. Knutti, K.B. Biggers: The Utah/MIT dextrous hand: Work in progress. In: First International Conference on Robotics Research, ed. by M. Brady, R.P. Paul (MIT Press, Cambridge 1984) pp. 601–653Google Scholar
  173. 28.173
    H. Shinoda, H. Oasa: Passive wireless sensing element for sensitive skin, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 2 (2000) pp. 1516–1521Google Scholar
  174. 28.174
    M. Hakozaki, H. Shinoda: Digital tactile sensing elements communicating through conductive skin layers, Proc. IEEE Int. Conf. Robotics Autom. (ICRA’02), Vol. 4 (2002) pp. 3813–3817Google Scholar
  175. 28.175
    L. Ascari, P. Corradi, L. Beccai, C. Laschi: A miniaturized and flexible optoelectronic sensing system for a tactile skin, Int. J. Micromechanics Microengineering 17, 2288–2298 (2007)CrossRefGoogle Scholar
  176. 28.176
    M. Zillich, W. Feiten: A versatile tactile sensor system for covering large and curved surface areas, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012) pp. 20–24Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations