Skip to main content

Flying Robots

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

Unmanned aircraft systems (GlossaryTerm

UAS

s) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.

figure a

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-D:

two-dimensional

2.5-D:

two-and-a-half-dimensional

3-D:

three-dimensional

6-D:

six-dimensional

AC:

aerodynamic center

AIAA:

American Institute of Aeronautics and Astronautics

AOA:

angle of attack

BEMT:

blade element momentum theory

BET:

blade element theory

CFD:

computational fluid dynamics

COG:

center of gravity

DC:

direct current

DOF:

degree of freedom

EKF:

extended Kalman filter

FCU:

flight control-unit

Fl-UAS:

flapping wing unmanned aerial system

FW:

fixed-wing

GIS:

geographic information system

GPS:

global positioning system

ISA:

international standard atmosphere

LEV:

leading edge vortex

LiPo:

lithium polymer

LQR:

linear quadratic regulator

LtA-UAS:

lighter-than-air system

LtA:

lighter-than-air

MIMO:

multiple-input–multiple-output

MPC:

model predictive control

MT:

momentum theory

NASA:

National Aeronautics and Space Agency

NDI:

nonlinear dynamic inversion

NOAA:

National Oceanic and Atmospheric Administration

PL:

power loading

RSTA:

reconnaissance, surveillance, and target acquisition

RW:

rotary-wing

SAS:

stability augmentation system

SISO:

single input single-output

SLAM:

simultaneous localization and mapping

SM:

static margin

SOS:

save our souls

TECS:

total energy control system

UAS:

unmanned aircraft system

UAV:

unmanned aerial vehicle

UWB:

ultrawide band

VTOL:

vertical take-off and landing

References

  1. S. Leutenegger, M. Chli, R.Y. Siegwart: Brisk: Binary robust invariant scalable keypoints, Proc. IEEE Int. Conf. Comput. Vis. (ICCV) (2011) pp. 2548–2555

    Google Scholar 

  2. D. Scaramuzza, M.C. Achtelik, L. Doitsidis, F. Fraundorfer, E.B. Kosmatopoulos, A. Martinelli, M.W. Achtelik, M. Chli, S.A. Chatzichristofis, L. Kneip, G.H. Lee, S. Lynen, L. Meier, M. Pollefeys, A. Renzaglia, R. Siegwart, J.C. Stumpf, P. Tanskanen, C. Troiani, S. Weiss: Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments, IEEE Robotics Autom. Mag. 2014(9), 1–10 (2014)

    Google Scholar 

  3. K. Alexis, G. Nikolakopoulos, A. Tzes: Model predictive quadrotor control: Attitude, altitude and position experimental studies, IET Control Theory Appl. 6(12), 1812–1827 (2012)

    Article  MathSciNet  Google Scholar 

  4. M.W. Achtelik, S. Lynen, S. Weiss, M. Chli, R. Siegwart: Motion and uncertainty aware path planning for micro aerial vehicles, J. Field Robotics 31(4), 676–698 (2014)

    Article  Google Scholar 

  5. K. Nonami: Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles (Springer, Berlin, Heidelberg 2010)

    Book  Google Scholar 

  6. H. Tennekes: The Simple Science of Flight: From Insects to Jumbo Jets (MIT, Cambridge 2009)

    Google Scholar 

  7. W.J. Pisano, D.A. Lawrence: Control limitations of small unmanned aerial vehicles in turbulent environments, Proc. AIAA Guid. Navig. Control Conf. (2009)

    Google Scholar 

  8. B. Mettler, C. Dever, E. Feron: Scaling effects and dynamic characteristics of miniature rotorcraft, J. Guid. Control Dyn. 27(3), 466–478 (2004)

    Article  Google Scholar 

  9. ICAO: Manual of the ICAO Standard Atmosphere: Extended to 80 Kilometres (262 500 feet) (Int. Civil Aviation Organization (ICAO), Montréal 1993)

    Google Scholar 

  10. M. Hepparle: JavaFoil - Analysis of java airfoils, http://www.mh-aerotools.de/airfoils/javafoil.htm (2007)

  11. M. Drela: XFOIL - Subsonic airfoil development system, http://www.web.mit.edu/drela/Public/web/xfoil (2000)

  12. Techwinder: xlfr5, http://www.xflr5.com (2000)

  13. B.W. McCormick: Aerodynamics, Aeronautics, and Flight Mechanics (Wiley, New York 1979)

    Google Scholar 

  14. G.J. Leishman: Principles of Helicopter Aerodynamics (Cambridge Univ. Press, Cambridge 2006)

    Google Scholar 

  15. G.D. Padfield: Helicopter Flight Dynamics (Blackwell, New York 2007)

    Book  Google Scholar 

  16. L. Zaccarian: Dc Motors: Dynamic Model and Control Techniques (Lecture Notes Univ. Rome, Rome 2012)

    Google Scholar 

  17. M. Drela: AVL (Software for aerodynamic and flight-dynamic analysis), http://web.mit.edu/drela/Public/web/avl (2004)

  18. B. Etkin: Dynamics of Atmospheric Flight (Wiley, New York 1972)

    Google Scholar 

  19. G.J.J. Ducard: Fault-Tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles, Advanced in Industrial Control (Springer, Berlin, Heidelberg 2009)

    Book  MATH  Google Scholar 

  20. M.C.Y. Niu: Airframe Structural Design (Conmilit, Hong Kong 1988)

    Google Scholar 

  21. R. Randolph: R/C Airplane Building Techniques, R/C Encyclopedia (Air Age, Wilton 1991)

    Google Scholar 

  22. D.P. Raymer: Aircraft Design: A Conceptual Approach (AIAA, Washington 1989)

    Google Scholar 

  23. A. Noth: Design of Solar Powered Airplanes for Continuous Flight, Ph.D. Thesis (Ecole Polytechnique Fedenale de Lausanne, Lausanne 2008)

    Google Scholar 

  24. R.W. Beard, T.W. McLain: Small Unmanned Aircraft: Theory and Practice (Princeton Univ. Press, Princeton 2012)

    Book  Google Scholar 

  25. A.A. Lambregts: Vertical flight path and speed control autopilot design using total energy principles, AIAA Paper (AIAA, Washington 1983)

    Book  Google Scholar 

  26. S. Park, J. Deyst, J.P. How: A new nonlinear guidance logic for trajectory tracking, Proc. AIAA Guid. Navig. Control Conf. (2004) pp. 16–19

    Google Scholar 

  27. S. Bouabdallah, C. Bermes, S. Grzonka, C. Gimkiewicz, A. Brenzikofer, R. Hahn, D. Schafroth, G. Grisett, W. Burgard, R. Siegwart: Towards palm–size autonomous helicopters, Proc. Int. Conf. Exhib. Unmanned Aer. Veh. (2010)

    Google Scholar 

  28. P.I.E. Pounds, D.R. Bersak, A.M. Dollar: Grasping from the air: Hovering capture and load stability, Proc. IEEE Conf. Robotics Autom. (ICRA) (2011)

    Google Scholar 

  29. D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, D. Rus: Energy-efficient autonomous four-rotor flying robot controlled at 1 khz, Proc. IEEE Int. Conf. Robotics Auton. Syst. (2007)

    Google Scholar 

  30. G.M. Hoffmann, H. Huang, S.L. Waslander, C.J. Tomlin: Quadrotor helicopter flight dynamics and control: Theory and experiment, Proc. AIAA Guid. Navig. Control Conf. (2007)

    Google Scholar 

  31. A. Ko, O.J. Ohnaian, P. Gelhausen: Ducted fan uav modeling and simulation in preliminary design, Proc. AIAA Model. Simul. Technol. Conf. Exhibit. (2007)

    Google Scholar 

  32. R. Naldi, F. Forte, L. Marconi: A class of modular aerial robots, Proc. 50th IEEE Conf. Decis. Control Eur. Control Conf. (2011)

    Google Scholar 

  33. E.R. Ulrich, J.S. Humbert, D.J. Pines: Pitch and heave control of robotic samara micro air vehicles, J. Aircr. 47, 1290–1299 (2010)

    Article  Google Scholar 

  34. C.Y. Yun, I. Park, H.Y. Lee, J.S. Jung, I.S. Hwang, S.J. Kim: A new vtol uav cyclocopter with cycloidal blades system, Proc. 60th AHS Annu. Forum Amer. Helicopter Soc. (2004)

    Google Scholar 

  35. R.W. Prouty: Helicopter Performance, Stability and Control (Krieger, New York 2005)

    Google Scholar 

  36. M.B. Tischler, R.K. Remple: Aircraft and Rotorcraft System Identification: Engineering Methods with Flight-Test Examples (AIAA, Washington 2006)

    Google Scholar 

  37. B. Mettler: Identification, Modeling and Characteristics of Miniature Rotorcraft (Kluwer, Boston 2002)

    Google Scholar 

  38. A.R.S. Bramwell, G. Done, D. Balmford: Bramwell's Helicopter Dynamics (Butterworth-Heinemann, London 2001)

    Google Scholar 

  39. R.T.N. Chen: Effects of primary rotor parameters on flapping dynamics, Tech. Rep. (National Aeronautics and Space Administration, Washington 1980)

    Google Scholar 

  40. R.T.N. Chen: A survey of nonuniform inflow models of rotorcraft flight dynamics and control applications, Tech. Rep. (National Aeronautics and Space Administration, Washington 1989)

    Google Scholar 

  41. R. Cunha: Advanced Motion Control for Autonomous Air Vehicles, Ph.D. Thesis (Instituto Superior Tecnico, Universidade Tecnica de Lisbon, Lisbon 2007)

    Google Scholar 

  42. T.N. Pornsin-Sirirak, S.W. Lee, H. Nassef, J. Grasmeyer, Y.C. Tai, C.M. Ho, M. Keennon: MEMs wing technology for a battery powered ornithopter, Proc. 13th IEEE Annu. Int. Conf. MEMS (2000) pp. 799–804

    Google Scholar 

  43. T.N. Pornsin-Sirirak, Y.C. Tai, C.M. Ho, M. Keennon: Microbat: A palm-sized electrically powered ornithopter, Proc. NASA/SPL Workshop Biomorphic Robotics (2001) pp. 14–17

    Google Scholar 

  44. S.P. Sane: The aerodynamics of insect flight, J. Exp. Biol. 206(23), 4191–4208 (2003)

    Article  Google Scholar 

  45. M.H. Dickinson, F.O. Lehmann, S.P. Sane: Wing rotation and the aerodynamic basis of insect flight, Science 284(5422), 1954–1960 (1999)

    Article  Google Scholar 

  46. J. Young, S.M. Walker, R.J. Bomphrey, G.K. Taylor, A.L.R. Thomas: Details of insect wing design and deformation enhance aerodynamic function and flight efficiency, Science 325(5947), 1549–1552 (2009)

    Article  Google Scholar 

  47. L. Zhao, Q. Huang, X. Deng, S.P. Sane: Aerodynamic effects of flexibility in flapping wings, J. R. Soc. Interface 7(44), 485–497 (2010)

    Article  Google Scholar 

  48. F.O. Lehmann, S.P. Sane, M. Dickinson: The aerodynamic effects of wing-wing interaction in flapping insect wings, J. Exp. Biol. 208(16), 3075–3092 (2005)

    Article  Google Scholar 

  49. D. Lentink, S.R. Jongerius, N.L. Bradshaw: Flying Insects and Robots (Springer, Berlin, Heidelberg 2009)

    Google Scholar 

  50. G.C.H.E. de Croon, M.A. Groen, C. De Wagter, B. Remes, R. Ruijsink, B.W. van Oudheusden: Design, aerodynamics, and autonomy of the DelFly, Bioinspiration Biomim. 7(2), 025003 (2012)

    Article  Google Scholar 

  51. M. Keennon, K. Klingebiel, H. Won, A. Andriukov: Tailless flapping wing propulsion and control development for the nano hummingbird micro air vehicle, Proc. Am. Helicopter Soc. Futur. Vert. Lift Aircr. Des. Conf. (2012)

    Google Scholar 

  52. K.Y. Ma, P. Chirarattananon, S.B. Fuller, R.J. Wood: Controlled flight of a biologically inspired, insect-scale robot, Science 340(6132), 603–607 (2013)

    Article  Google Scholar 

  53. D. Lentink, M.H. Dickinson: Rotational accelerations stabilize leading edge vortices on revolving fly wings, J. Exp. Biol. 212(16), 2705–2719 (2009)

    Article  Google Scholar 

  54. W. Shyy, H. Aono, C.-K. Kang, H. Liu: An Introduction to Flapping Wing Aerodynamics (Cambridge Univ. Press, Cambridge 2013)

    Book  Google Scholar 

  55. C.P. Ellington, C. van den Berg, A.P. Willmott, A.L.R. Thomas: Leading-edge vortices in insect flight, Nature 384, 626–630 (1996)

    Article  Google Scholar 

  56. D.R. Warrick, B.W. Tobalske, D. Powers: Lift production in the hovering hummingbird, Proc. R. Soc. Biol. Sci. (2009) pp. 3747–3752

    Google Scholar 

  57. F.T. Muijres, L.C. Johansson, A. Hedenstrom: Leading edge vortex in a slow-flying passerine, Biol. Lett. 8(4), 554–557 (2012)

    Article  Google Scholar 

  58. J. Koo, T. Oka: Experimental Study on the Ground Effect of a Model Helicopter Rotor in Hovering, Tech. Rep. (NASA, Washington 1966)

    Google Scholar 

  59. S.P. Sane, M.H. Dickinson: The control of flight force by a applying wing: Lift and drag production, J. Exp. Biol. 204(15), 2607–2626 (2001)

    Article  Google Scholar 

  60. M.C. Achtelik, K.-M. Doth, D. Gurdan, J. Stumpf: Design of a multi rotor MAV with regard to efficiency, dynamics and redundancy, Proc. AIAA Guid. Navig. Control Conf. (2012)

    Google Scholar 

  61. Ascending Technologies Ltd.: http://www.asctec.de (2015)

  62. Sensefly (Parrot Company): http://www.sensefly.com (2000)

  63. M.W. Achtelik: Advanced Closed Loop Visual Navigation for Micro Aerial Vehicles, Ph.D. Thesis (ETH Zurich, Zurich 2014)

    Google Scholar 

  64. A. Bachrach, S. Prentice, R. He, N. Roy: RANGE – Robust autonomous navigation in GPS-denied environments, J. Field Robotics 28, 644–666 (2011)

    Article  Google Scholar 

  65. S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige, R. Siegwart: Keyframe-based visual-inertial slam using nonlinear optimization, Proc. Robotics Sci. Syst. (RSS) (2013)

    Google Scholar 

  66. S. Weiss: Vision Based Navigation for Micro Helicopters, Ph.D. Thesis (ETH Zurich, Zurich 2012)

    Google Scholar 

  67. A.I. Mourikis, S.I. Roumeliotis, J.W. Burdick: SC-KF mobile robot localization: A stochastic cloning kalman filter for processing relative-state measurements, IEEE Trans. Robotics 23(4), 717–730 (2007)

    Article  Google Scholar 

  68. A. Bachrach, S. Prentice, R. He, P. Henry, A.S. Huang, M. Krainin, D. Maturana, D. Fox, N. Roy: Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments, Int. J. Robotics Res. 31, 1320–1343 (2012)

    Article  Google Scholar 

  69. T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa, F. Ruess, M. Suppa, D. Burschka: Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue, IEEE Robotics Autom. Mag. 19(3), 46–56 (2012)

    Article  Google Scholar 

  70. S. Bouabdallah: Design and Control of Quadrotors with Application to Autonomous Flying, Ph.D. Thesis (STI School of Engineering, EPFL, Lausann 2007)

    Google Scholar 

  71. T. Lee, M. Leoky, N.H. McClamroch: Geometric tracking control of a quadrotor UAV on SE(3), Proc. 49th IEEE Conf. Dec. Control (CDC) (2010) pp. 5420–5425

    Google Scholar 

  72. P. Doherty, J. Kvarnström, F. Heintz: A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems, Auton. Agents Multi-Agent Syst. 19(3), 332–377 (2009)

    Article  Google Scholar 

  73. P.E. Hart, N.J. Nilsson, B. Raphael: A formal basis for the heuristic determination of minimum cost paths, Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  74. S. Karaman, E. Frazzoli: Incremental sampling-based algorithms for optimal motion planning, Proc. Robotics Sci. Syst. (RSS), Zaragoza (2010)

    Google Scholar 

  75. L.E. Kavraki, P. Švestka, J.-C. Latombe, M.H. Overmars: Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robotics Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  76. S.M. LaValle, J.J. Kuffner: Randomized kinodynamic planning, Int. J. Robotics Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  77. A. Bry, N. Roy: Rapidly-exploring random belief trees for motion planning under uncertainty, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 723–730

    Google Scholar 

  78. H. Cover, S. Choudhury, S. Scherer, S. Singh: Sparse tangential network (SPARTAN): Motion planning for micro aerial vehicles, IEEE Proc. Int. Conf. Robotics Autom. (ICRA) (2013)

    Google Scholar 

  79. R. He, S. Prentice, N. Roy: Planning in information space for a quadrotor helicopter in a gps-denied environments, IEEE Proc. Int. Conf. Robotics Autom. (ICRA) (2008) pp. 1814–1820

    Google Scholar 

  80. Q. Lindsey, D. Mellinger, V. Kumar: Construction with quadrotor teams, Auton. Robots 33(3), 323–336 (2012)

    Article  Google Scholar 

  81. J. Willmann, F. Augugliaro, T. Cadalbert, R. D'Andrea, F. Gramazio, M. Kohler: Aerial robotic construction towards a new field of architectural research, Int. J. Archt. Comput. 10(3), 439–460 (2012)

    Google Scholar 

  82. G. Darivianakis, K. Alexis, M. Burri, R. Siegwart: Hybrid predictive control for aerial robotic physical interaction towards inspection operations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2014)

    Google Scholar 

  83. L. Marconi, R. Naldi, L. Gentili: Modelling and control of a flying robot interacting with the environment, Automatica 47(12), 2571–2583 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  84. Z. Lin: UAV for mapping -- low altitude photogrammetric survey, Proc. 21st ISPRS Congr. Techn. Commis. I, Beijing (2008) pp. 1183–1186

    Google Scholar 

  85. J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, R. Siegwart: A UAV system for inspection of industrial facilities, Proc. IEEE Aerosp. Conf. (2013) pp. 1–8

    Google Scholar 

  86. Cyberhawk: Aerial Inspection and Suervying Specialists, http://www.thecyberhawk.com (2015)

  87. Petrobot Project: http://www.petrobotproject.eu/

  88. ARCAS: Aerial Robotics Cooperative Assembly System, http://www.arcas-project.eu/

  89. EuRoC: European Robotics Challenges, http://www.euroc-project.eu/

  90. ARGOS Challenge: http://www.argos-challenge.com/

  91. E.R. Hunt Jr., W.D. Hively, S.J. Fujikawa, D.S. Linden, C.S.T. Daughtry, G.W. McCarty: Acquisition of nir-green-blue digital photographs from unmanned aircraft for crop monitoring, Remote Sens. 2, 290–305 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Leutenegger .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Delfly II in hover available from http://handbookofrobotics.org/view-chapter/26/videodetails/493

:

AtlantikSolar field-trials available from http://handbookofrobotics.org/view-chapter/26/videodetails/602

:

senseSoar UAV Avionics testing available from http://handbookofrobotics.org/view-chapter/26/videodetails/603

:

Structural inspection path planning via iterative viewpoint resamplingwith application to aerial robotics available from http://handbookofrobotics.org/view-chapter/26/videodetails/604

:

sFly: Visual-inertial SLAM for a small helicopter in large outdoor environments available from http://handbookofrobotics.org/view-chapter/26/videodetails/688

:

UAV stabilization, mapping & obstacle avoidance using VI-sensor available from http://handbookofrobotics.org/view-chapter/26/videodetails/689

:

Project Skye – autonomous blimp available from http://handbookofrobotics.org/view-chapter/26/videodetails/690

:

Flight stability in aerial redundant manipulators available from http://handbookofrobotics.org/view-chapter/26/videodetails/693

:

The astounding athletic power of quadcopters available from http://handbookofrobotics.org/view-chapter/26/videodetails/694

:

Robots that fly … and cooperate available from http://handbookofrobotics.org/view-chapter/26/videodetails/695

:

A robot that flies like a bird available from http://handbookofrobotics.org/view-chapter/26/videodetails/696

:

Robotic insects make first controlled flight available from http://handbookofrobotics.org/view-chapter/26/videodetails/697

:

Towards valve turning using a dual-arm aerial manipulator available from http://handbookofrobotics.org/view-chapter/26/videodetails/719

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leutenegger, S. et al. (2016). Flying Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics