Flying Robots

  • Stefan LeuteneggerEmail author
  • Christoph Hürzeler
  • Amanda K. Stowers
  • Kostas Alexis
  • Markus W. Achtelik
  • David Lentink
  • Paul Y. Oh
  • Roland Siegwart
Part of the Springer Handbooks book series (SHB)


Unmanned aircraft systems (UAS s) have drawn increasing attention recently, owing to advancements in related research, technology, and applications. While having been deployed successfully in military scenarios for decades, civil use cases have lately been tackled by the robotics research community.

This chapter overviews the core elements of this highly interdisciplinary field; the reader is guided through the design process of aerial robots for various applications starting with a qualitative characterization of different types of UAS. Design and modeling are closely related, forming a typically iterative process of drafting and analyzing the related properties. Therefore, we overview aerodynamics and dynamics, as well as their application to fixed-wing, rotary-wing, and flapping-wing UAS, including related analytical tools and practical guidelines. Respecting use-case-specific requirements and core autonomous robot demands, we finally provide guidelines to related system integration challenges.










aerodynamic center


American Institute of Aeronautics and Astronautics


angle of attack


blade element momentum theory


blade element theory


computational fluid dynamics


center of gravity


direct current


degree of freedom


extended Kalman filter


flight control-unit


flapping wing unmanned aerial system




geographic information system


global positioning system


international standard atmosphere


leading edge vortex


lithium polymer


linear quadratic regulator


lighter-than-air system






model predictive control


momentum theory


National Aeronautics and Space Agency


nonlinear dynamic inversion


National Oceanic and Atmospheric Administration


power loading


reconnaissance, surveillance, and target acquisition




stability augmentation system


single input single-output


simultaneous localization and mapping


static margin


save our souls


total energy control system


unmanned aircraft system


unmanned aerial vehicle


ultrawide band


vertical take-off and landing


  1. 26.1
    S. Leutenegger, M. Chli, R.Y. Siegwart: Brisk: Binary robust invariant scalable keypoints, Proc. IEEE Int. Conf. Comput. Vis. (ICCV) (2011) pp. 2548–2555Google Scholar
  2. 26.2
    D. Scaramuzza, M.C. Achtelik, L. Doitsidis, F. Fraundorfer, E.B. Kosmatopoulos, A. Martinelli, M.W. Achtelik, M. Chli, S.A. Chatzichristofis, L. Kneip, G.H. Lee, S. Lynen, L. Meier, M. Pollefeys, A. Renzaglia, R. Siegwart, J.C. Stumpf, P. Tanskanen, C. Troiani, S. Weiss: Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments, IEEE Robotics Autom. Mag. 2014(9), 1–10 (2014)Google Scholar
  3. 26.3
    K. Alexis, G. Nikolakopoulos, A. Tzes: Model predictive quadrotor control: Attitude, altitude and position experimental studies, IET Control Theory Appl. 6(12), 1812–1827 (2012)MathSciNetCrossRefGoogle Scholar
  4. 26.4
    M.W. Achtelik, S. Lynen, S. Weiss, M. Chli, R. Siegwart: Motion and uncertainty aware path planning for micro aerial vehicles, J. Field Robotics 31(4), 676–698 (2014)CrossRefGoogle Scholar
  5. 26.5
    K. Nonami: Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles (Springer, Berlin, Heidelberg 2010)CrossRefGoogle Scholar
  6. 26.6
    H. Tennekes: The Simple Science of Flight: From Insects to Jumbo Jets (MIT, Cambridge 2009)Google Scholar
  7. 26.7
    W.J. Pisano, D.A. Lawrence: Control limitations of small unmanned aerial vehicles in turbulent environments, Proc. AIAA Guid. Navig. Control Conf. (2009)Google Scholar
  8. 26.8
    B. Mettler, C. Dever, E. Feron: Scaling effects and dynamic characteristics of miniature rotorcraft, J. Guid. Control Dyn. 27(3), 466–478 (2004)CrossRefGoogle Scholar
  9. 26.9
    ICAO: Manual of the ICAO Standard Atmosphere: Extended to 80 Kilometres (262 500 feet) (Int. Civil Aviation Organization (ICAO), Montréal 1993) Google Scholar
  10. 26.10
    M. Hepparle: JavaFoil - Analysis of java airfoils, (2007)
  11. 26.11
    M. Drela: XFOIL - Subsonic airfoil development system, (2000)
  12. 26.12
    Techwinder: xlfr5, (2000)
  13. 26.13
    B.W. McCormick: Aerodynamics, Aeronautics, and Flight Mechanics (Wiley, New York 1979)Google Scholar
  14. 26.14
    G.J. Leishman: Principles of Helicopter Aerodynamics (Cambridge Univ. Press, Cambridge 2006)Google Scholar
  15. 26.15
    G.D. Padfield: Helicopter Flight Dynamics (Blackwell, New York 2007)CrossRefGoogle Scholar
  16. 26.16
    L. Zaccarian: Dc Motors: Dynamic Model and Control Techniques (Lecture Notes Univ. Rome, Rome 2012)Google Scholar
  17. 26.17
    M. Drela: AVL (Software for aerodynamic and flight-dynamic analysis), (2004)
  18. 26.18
    B. Etkin: Dynamics of Atmospheric Flight (Wiley, New York 1972)Google Scholar
  19. 26.19
    G.J.J. Ducard: Fault-Tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles, Advanced in Industrial Control (Springer, Berlin, Heidelberg 2009)CrossRefzbMATHGoogle Scholar
  20. 26.20
    M.C.Y. Niu: Airframe Structural Design (Conmilit, Hong Kong 1988)Google Scholar
  21. 26.21
    R. Randolph: R/C Airplane Building Techniques, R/C Encyclopedia (Air Age, Wilton 1991)Google Scholar
  22. 26.22
    D.P. Raymer: Aircraft Design: A Conceptual Approach (AIAA, Washington 1989)Google Scholar
  23. 26.23
    A. Noth: Design of Solar Powered Airplanes for Continuous Flight, Ph.D. Thesis (Ecole Polytechnique Fedenale de Lausanne, Lausanne 2008)Google Scholar
  24. 26.24
    R.W. Beard, T.W. McLain: Small Unmanned Aircraft: Theory and Practice (Princeton Univ. Press, Princeton 2012)CrossRefGoogle Scholar
  25. 26.25
    A.A. Lambregts: Vertical flight path and speed control autopilot design using total energy principles, AIAA Paper (AIAA, Washington 1983)CrossRefGoogle Scholar
  26. 26.26
    S. Park, J. Deyst, J.P. How: A new nonlinear guidance logic for trajectory tracking, Proc. AIAA Guid. Navig. Control Conf. (2004) pp. 16–19Google Scholar
  27. 26.27
    S. Bouabdallah, C. Bermes, S. Grzonka, C. Gimkiewicz, A. Brenzikofer, R. Hahn, D. Schafroth, G. Grisett, W. Burgard, R. Siegwart: Towards palm–size autonomous helicopters, Proc. Int. Conf. Exhib. Unmanned Aer. Veh. (2010)Google Scholar
  28. 26.28
    P.I.E. Pounds, D.R. Bersak, A.M. Dollar: Grasping from the air: Hovering capture and load stability, Proc. IEEE Conf. Robotics Autom. (ICRA) (2011)Google Scholar
  29. 26.29
    D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, D. Rus: Energy-efficient autonomous four-rotor flying robot controlled at 1 khz, Proc. IEEE Int. Conf. Robotics Auton. Syst. (2007)Google Scholar
  30. 26.30
    G.M. Hoffmann, H. Huang, S.L. Waslander, C.J. Tomlin: Quadrotor helicopter flight dynamics and control: Theory and experiment, Proc. AIAA Guid. Navig. Control Conf. (2007)Google Scholar
  31. 26.31
    A. Ko, O.J. Ohnaian, P. Gelhausen: Ducted fan uav modeling and simulation in preliminary design, Proc. AIAA Model. Simul. Technol. Conf. Exhibit. (2007)Google Scholar
  32. 26.32
    R. Naldi, F. Forte, L. Marconi: A class of modular aerial robots, Proc. 50th IEEE Conf. Decis. Control Eur. Control Conf. (2011)Google Scholar
  33. 26.33
    E.R. Ulrich, J.S. Humbert, D.J. Pines: Pitch and heave control of robotic samara micro air vehicles, J. Aircr. 47, 1290–1299 (2010)CrossRefGoogle Scholar
  34. 26.34
    C.Y. Yun, I. Park, H.Y. Lee, J.S. Jung, I.S. Hwang, S.J. Kim: A new vtol uav cyclocopter with cycloidal blades system, Proc. 60th AHS Annu. Forum Amer. Helicopter Soc. (2004)Google Scholar
  35. 26.35
    R.W. Prouty: Helicopter Performance, Stability and Control (Krieger, New York 2005)Google Scholar
  36. 26.36
    M.B. Tischler, R.K. Remple: Aircraft and Rotorcraft System Identification: Engineering Methods with Flight-Test Examples (AIAA, Washington 2006)Google Scholar
  37. 26.37
    B. Mettler: Identification, Modeling and Characteristics of Miniature Rotorcraft (Kluwer, Boston 2002)Google Scholar
  38. 26.38
    A.R.S. Bramwell, G. Done, D. Balmford: Bramwell's Helicopter Dynamics (Butterworth-Heinemann, London 2001)Google Scholar
  39. 26.39
    R.T.N. Chen: Effects of primary rotor parameters on flapping dynamics, Tech. Rep. (National Aeronautics and Space Administration, Washington 1980)Google Scholar
  40. 26.40
    R.T.N. Chen: A survey of nonuniform inflow models of rotorcraft flight dynamics and control applications, Tech. Rep. (National Aeronautics and Space Administration, Washington 1989)Google Scholar
  41. 26.41
    R. Cunha: Advanced Motion Control for Autonomous Air Vehicles, Ph.D. Thesis (Instituto Superior Tecnico, Universidade Tecnica de Lisbon, Lisbon 2007)Google Scholar
  42. 26.42
    T.N. Pornsin-Sirirak, S.W. Lee, H. Nassef, J. Grasmeyer, Y.C. Tai, C.M. Ho, M. Keennon: MEMs wing technology for a battery powered ornithopter, Proc. 13th IEEE Annu. Int. Conf. MEMS (2000) pp. 799–804Google Scholar
  43. 26.43
    T.N. Pornsin-Sirirak, Y.C. Tai, C.M. Ho, M. Keennon: Microbat: A palm-sized electrically powered ornithopter, Proc. NASA/SPL Workshop Biomorphic Robotics (2001) pp. 14–17Google Scholar
  44. 26.44
    S.P. Sane: The aerodynamics of insect flight, J. Exp. Biol. 206(23), 4191–4208 (2003)CrossRefGoogle Scholar
  45. 26.45
    M.H. Dickinson, F.O. Lehmann, S.P. Sane: Wing rotation and the aerodynamic basis of insect flight, Science 284(5422), 1954–1960 (1999)CrossRefGoogle Scholar
  46. 26.46
    J. Young, S.M. Walker, R.J. Bomphrey, G.K. Taylor, A.L.R. Thomas: Details of insect wing design and deformation enhance aerodynamic function and flight efficiency, Science 325(5947), 1549–1552 (2009)CrossRefGoogle Scholar
  47. 26.47
    L. Zhao, Q. Huang, X. Deng, S.P. Sane: Aerodynamic effects of flexibility in flapping wings, J. R. Soc. Interface 7(44), 485–497 (2010)CrossRefGoogle Scholar
  48. 26.48
    F.O. Lehmann, S.P. Sane, M. Dickinson: The aerodynamic effects of wing-wing interaction in flapping insect wings, J. Exp. Biol. 208(16), 3075–3092 (2005)CrossRefGoogle Scholar
  49. 26.49
    D. Lentink, S.R. Jongerius, N.L. Bradshaw: Flying Insects and Robots (Springer, Berlin, Heidelberg 2009)Google Scholar
  50. 26.50
    G.C.H.E. de Croon, M.A. Groen, C. De Wagter, B. Remes, R. Ruijsink, B.W. van Oudheusden: Design, aerodynamics, and autonomy of the DelFly, Bioinspiration Biomim. 7(2), 025003 (2012)CrossRefGoogle Scholar
  51. 26.51
    M. Keennon, K. Klingebiel, H. Won, A. Andriukov: Tailless flapping wing propulsion and control development for the nano hummingbird micro air vehicle, Proc. Am. Helicopter Soc. Futur. Vert. Lift Aircr. Des. Conf. (2012)Google Scholar
  52. 26.52
    K.Y. Ma, P. Chirarattananon, S.B. Fuller, R.J. Wood: Controlled flight of a biologically inspired, insect-scale robot, Science 340(6132), 603–607 (2013)CrossRefGoogle Scholar
  53. 26.53
    D. Lentink, M.H. Dickinson: Rotational accelerations stabilize leading edge vortices on revolving fly wings, J. Exp. Biol. 212(16), 2705–2719 (2009)CrossRefGoogle Scholar
  54. 26.54
    W. Shyy, H. Aono, C.-K. Kang, H. Liu: An Introduction to Flapping Wing Aerodynamics (Cambridge Univ. Press, Cambridge 2013)CrossRefGoogle Scholar
  55. 26.55
    C.P. Ellington, C. van den Berg, A.P. Willmott, A.L.R. Thomas: Leading-edge vortices in insect flight, Nature 384, 626–630 (1996)CrossRefGoogle Scholar
  56. 26.56
    D.R. Warrick, B.W. Tobalske, D. Powers: Lift production in the hovering hummingbird, Proc. R. Soc. Biol. Sci. (2009) pp. 3747–3752Google Scholar
  57. 26.57
    F.T. Muijres, L.C. Johansson, A. Hedenstrom: Leading edge vortex in a slow-flying passerine, Biol. Lett. 8(4), 554–557 (2012)CrossRefGoogle Scholar
  58. 26.58
    J. Koo, T. Oka: Experimental Study on the Ground Effect of a Model Helicopter Rotor in Hovering, Tech. Rep. (NASA, Washington 1966)Google Scholar
  59. 26.59
    S.P. Sane, M.H. Dickinson: The control of flight force by a applying wing: Lift and drag production, J. Exp. Biol. 204(15), 2607–2626 (2001)Google Scholar
  60. 26.60
    M.C. Achtelik, K.-M. Doth, D. Gurdan, J. Stumpf: Design of a multi rotor MAV with regard to efficiency, dynamics and redundancy, Proc. AIAA Guid. Navig. Control Conf. (2012)Google Scholar
  61. 26.61
    Ascending Technologies Ltd.: (2015)
  62. 26.62
    Sensefly (Parrot Company): (2000)
  63. 26.63
    M.W. Achtelik: Advanced Closed Loop Visual Navigation for Micro Aerial Vehicles, Ph.D. Thesis (ETH Zurich, Zurich 2014)Google Scholar
  64. 26.64
    A. Bachrach, S. Prentice, R. He, N. Roy: RANGE – Robust autonomous navigation in GPS-denied environments, J. Field Robotics 28, 644–666 (2011)CrossRefGoogle Scholar
  65. 26.65
    S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige, R. Siegwart: Keyframe-based visual-inertial slam using nonlinear optimization, Proc. Robotics Sci. Syst. (RSS) (2013)Google Scholar
  66. 26.66
    S. Weiss: Vision Based Navigation for Micro Helicopters, Ph.D. Thesis (ETH Zurich, Zurich 2012)Google Scholar
  67. 26.67
    A.I. Mourikis, S.I. Roumeliotis, J.W. Burdick: SC-KF mobile robot localization: A stochastic cloning kalman filter for processing relative-state measurements, IEEE Trans. Robotics 23(4), 717–730 (2007)CrossRefGoogle Scholar
  68. 26.68
    A. Bachrach, S. Prentice, R. He, P. Henry, A.S. Huang, M. Krainin, D. Maturana, D. Fox, N. Roy: Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments, Int. J. Robotics Res. 31, 1320–1343 (2012)CrossRefGoogle Scholar
  69. 26.69
    T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa, F. Ruess, M. Suppa, D. Burschka: Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue, IEEE Robotics Autom. Mag. 19(3), 46–56 (2012)CrossRefGoogle Scholar
  70. 26.70
    S. Bouabdallah: Design and Control of Quadrotors with Application to Autonomous Flying, Ph.D. Thesis (STI School of Engineering, EPFL, Lausann 2007)Google Scholar
  71. 26.71
    T. Lee, M. Leoky, N.H. McClamroch: Geometric tracking control of a quadrotor UAV on SE(3), Proc. 49th IEEE Conf. Dec. Control (CDC) (2010) pp. 5420–5425Google Scholar
  72. 26.72
    P. Doherty, J. Kvarnström, F. Heintz: A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems, Auton. Agents Multi-Agent Syst. 19(3), 332–377 (2009)CrossRefGoogle Scholar
  73. 26.73
    P.E. Hart, N.J. Nilsson, B. Raphael: A formal basis for the heuristic determination of minimum cost paths, Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  74. 26.74
    S. Karaman, E. Frazzoli: Incremental sampling-based algorithms for optimal motion planning, Proc. Robotics Sci. Syst. (RSS), Zaragoza (2010)Google Scholar
  75. 26.75
    L.E. Kavraki, P. Švestka, J.-C. Latombe, M.H. Overmars: Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robotics Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  76. 26.76
    S.M. LaValle, J.J. Kuffner: Randomized kinodynamic planning, Int. J. Robotics Res. 20(5), 378–400 (2001)CrossRefGoogle Scholar
  77. 26.77
    A. Bry, N. Roy: Rapidly-exploring random belief trees for motion planning under uncertainty, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 723–730Google Scholar
  78. 26.78
    H. Cover, S. Choudhury, S. Scherer, S. Singh: Sparse tangential network (SPARTAN): Motion planning for micro aerial vehicles, IEEE Proc. Int. Conf. Robotics Autom. (ICRA) (2013)Google Scholar
  79. 26.79
    R. He, S. Prentice, N. Roy: Planning in information space for a quadrotor helicopter in a gps-denied environments, IEEE Proc. Int. Conf. Robotics Autom. (ICRA) (2008) pp. 1814–1820Google Scholar
  80. 26.80
    Q. Lindsey, D. Mellinger, V. Kumar: Construction with quadrotor teams, Auton. Robots 33(3), 323–336 (2012)CrossRefGoogle Scholar
  81. 26.81
    J. Willmann, F. Augugliaro, T. Cadalbert, R. D'Andrea, F. Gramazio, M. Kohler: Aerial robotic construction towards a new field of architectural research, Int. J. Archt. Comput. 10(3), 439–460 (2012)Google Scholar
  82. 26.82
    G. Darivianakis, K. Alexis, M. Burri, R. Siegwart: Hybrid predictive control for aerial robotic physical interaction towards inspection operations, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2014)Google Scholar
  83. 26.83
    L. Marconi, R. Naldi, L. Gentili: Modelling and control of a flying robot interacting with the environment, Automatica 47(12), 2571–2583 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 26.84
    Z. Lin: UAV for mapping -- low altitude photogrammetric survey, Proc. 21st ISPRS Congr. Techn. Commis. I, Beijing (2008) pp. 1183–1186Google Scholar
  85. 26.85
    J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, R. Siegwart: A UAV system for inspection of industrial facilities, Proc. IEEE Aerosp. Conf. (2013) pp. 1–8Google Scholar
  86. 26.86
    Cyberhawk: Aerial Inspection and Suervying Specialists, (2015)
  87. 26.87
  88. 26.88
    ARCAS: Aerial Robotics Cooperative Assembly System,
  89. 26.89
    EuRoC: European Robotics Challenges,
  90. 26.90
  91. 26.91
    E.R. Hunt Jr., W.D. Hively, S.J. Fujikawa, D.S. Linden, C.S.T. Daughtry, G.W. McCarty: Acquisition of nir-green-blue digital photographs from unmanned aircraft for crop monitoring, Remote Sens. 2, 290–305 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stefan Leutenegger
    • 1
    Email author
  • Christoph Hürzeler
    • 2
  • Amanda K. Stowers
    • 3
  • Kostas Alexis
    • 4
  • Markus W. Achtelik
    • 5
  • David Lentink
    • 6
  • Paul Y. Oh
    • 7
  • Roland Siegwart
    • 8
  1. 1.South Kensington Campus, Department of ComputingImperial College LondonLondonUK
  2. 2.Automation and Robotics R&DAlstom Power Thermal ServicesBadenSwitzerland
  3. 3.Department Mechanical EngineeringStanford UniversityStanfordUSA
  4. 4.Institute of Robotics and Intelligent SystemsETH ZurichZurichSwitzerland
  5. 5.Autonomous Systems LaboratoryETH ZurichZurichSwitzerland
  6. 6.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  7. 7.Department of Mechanical EngineeringUniversity of NevadaLas VegasUSA
  8. 8.Department of Mechanical EngineeringETH ZurichZurichSwitzerland

Personalised recommendations