Underwater Robots

  • Hyun-Taek ChoiEmail author
  • Junku Yuh
Part of the Springer Handbooks book series (SHB)


Covering about two-thirds of the earth, the ocean is an enormous system that dominates processes on the Earth and has abundant living and nonliving resources, such as fish and subsea gas and oil. Therefore, it has a great effect on our lives on land, and the importance of the ocean for the future existence of all human beings cannot be overemphasized. However, we have not been able to explore the full depths of the ocean and do not fully understand the complex processes of the ocean. Having said that, underwater robots including remotely operated vehicles (ROV s) and autonomous underwater vehicles (AUV s) have received much attention since they can be an effective tool to explore the ocean and efficiently utilize the ocean resources. This chapter focuses on design issues of underwater robots including major subsystems such as mechanical systems, power sources, actuators and sensors, computers and communications, software architecture, and manipulators while Chap. 51 covers modeling and control of underwater robots.


Acoustic Doppler Current Profiler Underwater Vehicle Autonomous Underwater Vehicle Carbon Fiber Reinforce Plastic Controller Area Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







alternating current


analog digital conveter


acoustic Doppler current profiler


alkaline fuel cell


attitude and heading reference system


air-independent power


Acorn RISC machine architecture


amplitude shift keying


autonomous systems laboratory


Autonomous Undersea Vehicles Application Center


autonomous underwater vehicle


Association for Unmanned Vehicle Systems International


battery management system


controller area network


carbon fiber reinforced plastic


common object request broker architecture


central processing unit


digital analog converter


direct current


direct methanol fuel cell


degree of freedom


differential phase shift keying


digital signal processor


Doppler velocity log


dense wave division multiplex


expandable polystyrene


evolution robotics software platform


finite element method


Norwegian defense research establishment


fiber-optic gyro


field-programmable gate array


frequency shift keying


glass-fiber reinforced plastic


GPS intelligent buoys


Gaussian minimum shift keying


global positioning system


high-definition serial digital interface


high definition


high frequency alternating current


internet communications engine


inside diameter


interferometric fiber-optic gyro


inertial measurement unit


inertia navigation system

inertial navigation system


input output


interprocess communication


industrial standard architecture


international submarine engineering


interval programming


Japan Agency for Marine-Earth Science and Technology


Korea Research Institute of Ships and Ocean Engineering


long-baseline system


long-range cruising AUV


light-weight communications and marshalling


Marine Autonomous Systems Engineering


Monterey Bay Aquarium Research Institute


molten carbonate fuel cell


microelectromechanical system


multiple FSK


middleware for robot


Massachusetts Institute of Technology


metal matrix composite


mission oriented operating suite


Mary phase shift keying


Mary quadrature amplitude modulation


Microsoft robotics developers studio


minimum shift keying


Naval Undersea Warfare Center Division Newport


open dynamics engine


outer diameter


US Office of Naval Research


open platform for robotic service


open robot control architecture


open robot control software


phosphoric acid fuel cell


peripheral component interconnect express


peripheral component interconnect




polymer electrolyte fuel cell


proton exchange membrane fuel cell




phase shift keying


polyvinyl chloride


quadrature amplitude modulation


quadrature phase shift keying


reduced instruction set computer


ring laser gyroscope


robot operating system


remotely operated vehicle



robot technology


synthetic aperture sonar


short baseline


solid oxide fuel cell


stream-oriented messaging architecture


teleo-reactive executive


tether management system


time of arrival


user datagram protocol


ultrahigh definition


universal plug and play


ultrashort baseline


unmanned underwater vehicle


Versa Module Europa


Woods Hole Oceanographic Institution


  1. 25.1
    J. Yuh, G. Marani, D.R. Blidberg: Applications of marine robotic vehicles, Intell. Serv. Robotics 4(4), 221–231 (2011)CrossRefGoogle Scholar
  2. 25.2
    J. Yuh: Design and control of autonomous underwater robots: A survey, Auton. Robots 8(1), 7–24 (2000)CrossRefGoogle Scholar
  3. 25.3
    S.W. Moore, H. Bohm, V. Jensen: Underwater Robotics: Science, Design and Fabrication (Marine Advanced Technology Education MATE Center, Monterey 2010)Google Scholar
  4. 25.4
    R.D. Christ, R.L. Wernli: The ROV Manual: A User Guide for Observation Class Remotely Operated Vehicles (Elsevier, Amsterdam 2007)Google Scholar
  5. 25.5
    K. Hardy, S. Weston, J. Sanderson: Under pressure: Testing before deployment is integral to success at sea, Sea Technol. 50(2), 19–25 (2009)Google Scholar
  6. 25.6
    T. Hyakudome: Design of autonomous underwater vehicle, Int. J. Adv. Robotic Syst. 8(1), 131–139 (2011)Google Scholar
  7. 25.7
    W.H. Wang, R.C. Engelaar, X.Q. Chen, J.G. Chase: The state-of-art of underwater vehicles – Theories and applications. In: Mobile Robots – State of the Art in Land, Sea, Air, and Collaborative Missions, ed. by X.Q. Chen, Y.Q. Chen, J.G. Chase (InTech, Rijeka 2009)Google Scholar
  8. 25.8
    A.D. Bowen, D.R. Yoerger, C. Taylor, R. McCabe, J. Howland, D. Gomez-Ibanez, J.C. Kinsey, M. Heintz, G. McDonald, D.B. Peter, S.B. Fletcher, C. Young, J. Buescher, L.L. Whitcomb, S.C. Martin, S.E. Webster, M.V. Jakuba: The Nereus hybrid underwater robotic vehicle for global ocean science operations to 11,000 m depth, Proc. MTS/IEEE Ocean (2007)Google Scholar
  9. 25.9
    T.J. Osse, T.J. Lee: Composite pressure hulls for autonomous underwater vehicles, Proc. MTS/IEEE Ocean (2007)Google Scholar
  10. 25.10
    K. Hardy: Anodizing aluminum for underwater applications, Ocean News Technol. 15(3), 54–56 (2009)Google Scholar
  11. 25.11
    S.M.A. Sharkh, G. Griffiths, A.T. Webb: Power sources for unmanned underwater vehicles. In: Technology and Applications of Autonomous Underwater Vehicles, ed. by G. Griffiths (Taylor Francis, New York 2002) pp. 19–35Google Scholar
  12. 25.12
    H. Yoshida: Fundamentals of underwater vehicle hardware and their applications. In: Underwater Vehicles, ed. by A.V. Inzartsev (InTech, Rijeka 2009) pp. 557–582Google Scholar
  13. 25.13
    L.L. Whitcomb: Underwater robotics: Out of the research laboratory and into the field, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 709–716Google Scholar
  14. 25.14
    Ø. Hasvold, N.J. Størkersen, S. Forseth, T. Lian: Power sources for autonomous underwater vehicles, J. Power Sourc. 162(2), 935–942 (2006)CrossRefGoogle Scholar
  15. 25.15
    A. Mendez, T.J. Leo, M.A. Herreros: Fuel cell power systems for autonomous underwater vehicles: State of the art, Proc. Int. Conf. Energy (2014)Google Scholar
  16. 25.16
    K.L. Davies, R.M. Moore: Unmanned underwater vehicle fuel cell energy/power system technology assessment, IEEE J. Ocean Eng. 32(2), 365–372 (2007)CrossRefGoogle Scholar
  17. 25.17
    H. Yoshida, T. Sawa, T. Hyakudome, S. Ishibashi, T. Tani, M. Iwata, T. Moriga: The high efficiency multi-less (HEML) fuel cell – A high energy source for underwater vehicles, buoys, and stations, Proc. MTS/IEEE Ocean (2011)Google Scholar
  18. 25.18
    Q. Cai, D.J. Browning, D.J. Brett, N.P. Brandon: Hybrid fuel cell/battery power systems for underwater vehicles, Proc. 3rd SEAS DTC (2007)Google Scholar
  19. 25.19
    K. E. Robinson: Li-poly pressure-tolerant batteries dive deep, Batter. Power Prod. Technol. 11(2), 999999 (2007) Google Scholar
  20. 25.20
    M.C. Wrinch, M.A. Tomim, J. Marti: An analysis of sub sea electric power transmission techniques from DC to AC 50/60 Hz and beyond, Proc. MTS/IEEE Ocean. (2007)Google Scholar
  21. 25.21
    N. Størkersen, Ø. Hasvold: Power sources for AUVs, Proc. Sci. Def. Conf. (2004)Google Scholar
  22. 25.22
    S. Cohan: Trends in ROV development, Mar. Technol. Soc. J. 42(1), 38–43 (2008)CrossRefGoogle Scholar
  23. 25.23
    E. Mellinger: Power system for new MBARI ROV, Proc. IEEE Oceans (1993) pp. 152–157Google Scholar
  24. 25.24
    M.R. Arshad: Recent advancement in sensor technology for underwater applications, Indian J. Mar. Sci. 38(3), 267–273 (2009)Google Scholar
  25. 25.25
    L. Lionel: Underwater robots part I: Current systems and problem pose. In: Mobile Robotics, ed. by A. Lazinica (InTech, Rijeka 2006) pp. 335–360Google Scholar
  26. 25.26
    S.M.A. Sharkh: Propulsion systems for AUVs. In: Technology and Applications of Autonomous Underwater Vehicles, ed. by G. Griffiths (Taylor Francis, New York 2002) pp. 109–1255CrossRefGoogle Scholar
  27. 25.27
    T. Schilling, W. Klassen, C. Barrett, J. Stanley: Power at depth: Efficient ROV power delivery and thrust generation for improved construction, repair, and maintenance support, Proc. Offshore Technol. Conf. (2005)Google Scholar
  28. 25.28
    P.D. Groves: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (Artech House, Boston 2013)zbMATHGoogle Scholar
  29. 25.29
    F. Viksten: On the Use of an Accelerometer for Identification of a Flexible Manipulator, Master Thesis (Linköping Univ., Linköping 2001)Google Scholar
  30. 25.30
    J. Romeo, G. Lester: Navigation is key to AUV missions, Sea Technol. 42(12), 24–30 (2001)Google Scholar
  31. 25.31
    J.C. Kinsey, R.M. Eustice, L.L. Whitcomb: A~survey of underwater vehicle navigation: Recent advances and new challenges, Proc. Int. Conf. Manoeuvering Control Mar. Craft, Lisbon (2006)Google Scholar
  32. 25.32
    C. Silpa-Anan, T. Brinsmead, S. Abdallah, A. Zelinsky: Preliminary experiments in visual servo control for autonomous underwater vehicle, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003) pp. 1824–1829Google Scholar
  33. 25.33
    RTD Embedded Technologies, Inc., What is PC/104? (2014)
  34. 25.34
    A. Kenny, G. Lopez: Advances in and extended application areas for Doppler sonar, Proc. MTS/IEEE Ocean. (2012)Google Scholar
  35. 25.35
    E. Thurman, J. Riordan, D. Toal: Multi-sonar integration and the advent of senor intelligence. In: Advances in Sonar Technology, ed. by S.R. Silva (InTech, Rijeka 2009) pp. 151–164Google Scholar
  36. 25.36
    Sound Metrics Corporation (Bellevue, WA): Didson Sonar, L (2015)
  37. 25.37
    Y. Lee, T.G. Kim, H.-T. Choi: A~new approach of detection and recognition for artificial landmarks from noisy acoustic images, Adv. Intell. Syst. Comput. 274, 851–858 (2014)Google Scholar
  38. 25.38
    A. Alcocer, P. Oliveira, A. Pascoal: Underwater acoustic positioning systems based on buoys with GPS, Proc. 8th Europ. Conf. Underw. Acoust., Vol. 8 (2006) pp. 1–8Google Scholar
  39. 25.39
    L. Brun: ROV/AUV trends market and technology, Mar. Technol. Rep. 5(7), 48–51 (2012)Google Scholar
  40. 25.40
    G. Verma, M. Kalra, S.K. Jain, D.A. Roy, B.B. Biswas: Embedded PC based controller for use in VME bus based data acquisition system, Proc. 9th Int. Workshop Pers. Comput. Part. Accel. Controls (2012) pp. 65–76Google Scholar
  41. 25.41
    S.B. Williams, P. Newman, G. Dissanayake, J. Rosenblatt, H. Durrant-Whyte: A~decoupled, distributed auv control architecture, Int. Symp. Robotics 31, 246–251 (2000)Google Scholar
  42. 25.42
    H.-T. Choi, A. Hanai, S.K. Choi, J. Yuh: Development of an underwater robot, ODIN-III. Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (2003) pp. 836–841Google Scholar
  43. 25.43
    D. Lee, G. Kim, D. Kim, H. Myung, H. Choi: Vision-based object detection and tracking for autonomous navigation of underwater robots, Ocean Eng. 48, 59–68 (2012)CrossRefGoogle Scholar
  44. 25.44
    Xilinx, Inc.: Zynq-7000 all programmable SoC, (2014)
  45. 25.45
    B. Benson, Y. Li, R. Kastner, B. Faunce, K. Domond, D. Kimball, C. Schurgers: Design of a~low-cost, underwater acoustic modem for short-range sensor networks, Proc. MTS/IEEE Ocean. (2010)Google Scholar
  46. 25.46
    D.B. Kilfoyle, A.B. Baggeroer: The state of the art in underwater acoustic telemetry, IEEE J. Ocean. Eng. 25(1), 4–27 (2000)CrossRefGoogle Scholar
  47. 25.47
    Z. Jiang: Underwater acoustic networks–issues and solutions, Int. J. Intell. Control Syst. 13(3), 152–161 (2008)Google Scholar
  48. 25.48
    M.W. Doniec, A. Xu, D. Rus: Robust real-time high definition underwater video streaming with AquaOptical II, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Karlsruhe (2013)Google Scholar
  49. 25.49
    J.W. Nicholson, A.J. Healey: The present state of autonomous underwater vehicle (AUV) applications and technologies, Mar. Technol. Soc. J. 42(1), 44–51 (2008)CrossRefGoogle Scholar
  50. 25.50
    W.D. Smart: Is a~common middleware for robotics possible?, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2007)Google Scholar
  51. 25.51
    K.P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru, G.A. Demetriou: Control architectures for autonomous underwater vehicles, IEEE Control Syst. 17(6), 48–64 (1997)CrossRefGoogle Scholar
  52. 25.52
    P. Ridao, J. Yuh, J. Batlle, K. Sugihara: On AUV control architecture, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2000) pp. 855–860Google Scholar
  53. 25.53
    C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, R. McEwen: T-rex: A~model-based architecture for AUV control, Proc. 3rd Workshop Plan. Plan Exec. Real-World Syst. (2007)Google Scholar
  54. 25.54
    E.F. Perdomo, J.C. Gámez, A.C.D. Brito, D.H. Sosa: Mission specification in underwater robotics, J. Phys. Agents 4(1), 25–34 (2010)Google Scholar
  55. 25.55
    M.L. Seto (Ed.): Marine Robot Autonomy (Springer, New York 2013)Google Scholar
  56. 25.56
    D. Goldberg: Huxley: A~flexible robot control architecture for autonomous underwater vehicles, Proc. MTS/IEEE Ocean. (2011)Google Scholar
  57. 25.57
    B.S. Bingham, J.M. Walls, R.M. Eustice: Development of a~flexible command and control software architecture for marine robotic applications, Mar. Technol. Soc. J. 45(3), 25–36 (2011)CrossRefGoogle Scholar
  58. 25.58
  59. 25.59
    M.R. Benjamin, H. Schmidt, P.M. Newman, J.J. Leonard: Nested autonomy for unmanned marine vehicles with MOOS-IvP, J. Field Robotics 27(6), 834–875 (2010)CrossRefGoogle Scholar
  60. 25.60
    C. Lin, X. Feng, Y. Li, K. Liu: Toward a~generalized architecture for unmanned underwater vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 2368–2373Google Scholar
  61. 25.61
    N. Mohamed, J. Al-Jaroodi, I. Jawhar: Middleware for robotics: A~survey, Proc. IEEE Conf. Robotics, Autom. Mechatron. (2008) pp. 736–742Google Scholar
  62. 25.62
    M. Namoshe, N.S. Tlale, C.M. Kumile, G. Bright: Open middleware for robotics, Proc. 5th Int. Conf. Mechatron. Mach. Vis. Pract. (2008) pp. 189–194Google Scholar
  63. 25.63
    D. Brugali, G.S. Broten, A. Cisternino, D. Colombo, J. Fritsch, B. Gerkey, G. Kraetzschmar, R. Vaughan, H. Utz: Trends in robotic software frameworks. In: Software Engineering for Experimental Robotics, ed. by D. Brugali (Springer, Berlin, Heidelberg 2007) pp. 259–266CrossRefGoogle Scholar
  64. 25.64
    A. Elkady, T. Sobh: Robotics middleware: A~comprehensive literature survey and attribute-based bibliography, J. Robotics 2012, 959013 (2012)CrossRefGoogle Scholar
  65. 25.65
    S. Kim, H.-T. Choi, J.-W. Lee, Y.J. Lee: Design, implementation, and experiment of an underwater robot for effective inspection of underwater structures, Proc. 2nd Int. Conf. Robot Intell. Technol. Appl. (2013)Google Scholar
  66. 25.66
    T.W. Kim, J. Yuh, G. Marani: Underwater vehicle manipulators. In: Springer Handbook of Ocean Engineering, ed. by M. Dhanak, N. Xiros (Springer, Berlin, Heidelberg, 2016), in press.Google Scholar
  67. 25.67
    N. Kato, D.M. Lane: Coordinated control of multiple manipulators in underwater robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (1996) pp. 2505–2510CrossRefGoogle Scholar
  68. 25.68
    M.W. Dunnigan, D.M. Lane, A.C. Clegg, I. Edwards: Hybrid position/force control of a~hydraulic underwater manipulator, Proc. IEEE Control Theory Appl. 143, 145–151 (1996)CrossRefzbMATHGoogle Scholar
  69. 25.69
    B. Lévesque, M.J. Richard: Dynamic analysis of a manipulator in a~fluid environment, Int. J. Robotics Res. 13(3), 221–231 (1994)CrossRefGoogle Scholar
  70. 25.70
    H. Mahesh, J. Yuh, R. Lakshmi: A~coordinated control of an underwater vehicle and robotic manipulator, J. Robotics Syst. 8(3), 339–370 (1991)CrossRefzbMATHGoogle Scholar
  71. 25.71
    S. McMillan, D.E. Orin, R.B. McGhee: Efficient dynamic simulation of an underwater vehicle with a robotic manipulator, IEEE Trans. Syst. Man Cybern. 25(8), 1194–1206 (1995)CrossRefGoogle Scholar
  72. 25.72
    T.W. McLain, S.M. Rock, M.J. Lee: Experiments in the coordinated control of an underwater arm/vehicle system, Autom. Robotics 3, 213–232 (1996)Google Scholar
  73. 25.73
    T.J. Tarn, G.A. Shoults, S.P. Yang: A~dynamic model of an underwater vehicle with a~robotic manipulator using kanes method, Autom. Robot. 3, 269–283 (1996)Google Scholar
  74. 25.74
    K. Ioi, K. Itoh: Modelling and simulation of an underwater manipulator, Adv. Robot. 4(4), 303–317 (1989)CrossRefGoogle Scholar
  75. 25.75
    I. Schjølberg, T.I. Fossen: Modelling and control of underwater vehicle-manipulator systems, Proc. 3rd Conf. Mar. Craft Manoeuvering Control (1994)Google Scholar
  76. 25.76
    K.N. Leabourne, S.M. Rock: Model development of an underwater manipulator for coordinated arm-vehicle control, Proc. MTS/IEEE Ocean., Vol. 2 (1998) pp. 941–946Google Scholar
  77. 25.77
    M. Lee, H.-S. Choi: A~robust neural controller for underwater robot manipulators, IEEE Trans. Neural Netw. 11(6), 1465–1470 (2000)CrossRefGoogle Scholar
  78. 25.78
    J.-H. Ryu, D.-S. Kwon, P.-M. Lee: Control of underwater manipulators mounted on an ROV using base force information, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (2001) pp. 3238–3243Google Scholar
  79. 25.79
    M.H. Patel: Dynamics of Offshore Structures (Butterworths, London 1989)Google Scholar
  80. 25.80
    A.W. Troesch, S.K. Kim: Hydrodynamic forces acting on cylinders oscillating at small amplitudes, J. Fluids Struct. 5(1), 113–126 (1991)CrossRefGoogle Scholar
  81. 25.81
    M. Hildebrandt, L. Christensen, J. Kerdels, J. Albiez, F. Kirchner: Realtime motion compensation for ROV-based teleoperated underwater manipulators, Proc. MTS/IEEE Ocean. Eur. (2009) pp. 1–6Google Scholar
  82. 25.82
    O. Brock, R. Grupen: Final Report of NSF/NASA Workshop on Autonomous Mobile Manipulation (AMM) (Univ. of Massachusetts, Amherst 2005)Google Scholar
  83. 25.83
    G. Antonelli: Underwater Robots, Springer Tracts in Advanced Robotics, Vol. 96, 3rd edn. (Springer, Berlin, Heidelberg 2014)CrossRefGoogle Scholar
  84. 25.84
    M. Carreras, J. Yuh, J. Batlle, P. Ridao: A~behavior-based scheme using reinforcement learning for autonomous underwater vehicles, IEEE J. Ocean. Eng. 30(2), 416–427 (2005)CrossRefGoogle Scholar
  85. 25.85
    M. Carreras, J. Yuh, J. Batlle, P. Ridao: Application of SONQL for real-time learning of robot behaviors, Robots Auton. Syst. 55(8), 628–642 (2007)CrossRefGoogle Scholar
  86. 25.86
    S. Zhao, J. Yuh: Experimental study on advanced underwater robot control, IEEE Trans. Robotics 21(4), 695–703 (2005)CrossRefGoogle Scholar
  87. 25.87
    A. Hanai, H.-T. Choi, S.K. Choi, J. Yuh: Experimental study on fine motion control of underwater robots, Adv. Robotics 18(10), 963–978 (2004)CrossRefGoogle Scholar
  88. 25.88
    T.W. Kim, J. Yuh: Application of on-line neuro-fuzzy controller to AUVs, Inf. Sci. 145(1), 169–182 (2002)CrossRefzbMATHGoogle Scholar
  89. 25.89
    C.S.G. Lee, J.-S. Wang, J. Yuh: Self-adaptive neuro-fuzzy systems for autonomous underwater vehicle control, Adv. Robotics 15(5), 589–608 (2001)CrossRefGoogle Scholar
  90. 25.90
    J. Yuh, J. Nie: Application of non-regressor-based adaptive control to underwater robots: Experiment, Comput. Electr. Eng. 26(2), 169–179 (2000)CrossRefGoogle Scholar
  91. 25.91
    K.C. Yang, J. Yuh, S.K. Choi: Fault-tolerant system design of an autonomous underwater vehicle ODIN: An experimental study, Int. J. Syst. Sci. 30(9), 1011–1019 (1999)CrossRefzbMATHGoogle Scholar
  92. 25.92
    H.H. Wang, S.M. Rock, M.J. Lees: Experiments in automatic retrieval of underwater objects with an AUV, Proc. MTS/IEEE Ocean., Vol. 1 (1995) pp. 366–373Google Scholar
  93. 25.93
    J. Evans, P. Redmond, C. Plakas, K. Hamilton, D. Lane: Autonomous docking for intervention-AUVs using sonar and video-based real-time 3D pose estimation, Proc. MTS/IEEE Ocean., Vol. 4 (2003) pp. 2201–2210Google Scholar
  94. 25.94
    G. Marani, S.K. Choi, J. Yuh: Underwater autonomous manipulation for intervention missions AUVs, Ocean Eng. 36(1), 15–23 (2009)CrossRefGoogle Scholar
  95. 25.95
    G. Marani, J. Yuh, S.K. Choi: Autonomous manipulation for an intervention AUV. In: Advances in Unmanned Marine Vehicles, IEE Control Engineering Series, ed. by B. Sutton, G. Roberts (Institution of Engineering and Technology, London 2006) pp. 217–237CrossRefGoogle Scholar
  96. 25.96
    G. Marani, S.K. Choi, J. Yuh: Real-time center of buoyancy identification for optimal hovering in autonomous underwater intervention, Intell. Serv. Robotics 3(3), 175–182 (2010)CrossRefGoogle Scholar
  97. 25.97
    D. Beciri: SAUVIM robot completed its first fully autonomous mission, (2010)
  98. 25.98
    P. Sanz, R. Ridao, G. Oliver, P. Casalino, C. Insaurralde, C. Silvestre, C. Melchiorri, A. Turetta: TRIDENT: Recent improvements about autonomous underwater intervention missions, Proc. IFAC Workshop Navig. Guid. Control Underw. Veh. (NGCUV) (2012)Google Scholar
  99. 25.99
    D. Ribas, N. Palomeras, P. Ridao, M. Carreras, A. Mallios: Girona 500 AUV: From survey to intervention, IEEE/ASME Trans. Mechatron. 17(1), 46–53 (2012)CrossRefGoogle Scholar
  100. 25.100
    M. Prats, D. Ribas, N. Palomeras, J.C. Garcia, V. Nannen, S. Wirth, J.J. Fernañdez, J.P. Beltrañ, R. Campos, P. Ridao, P.J. Sanz, G. Oliver, M. Carreras, N. Gracias, R. Marín, A. Ortiz: Reconfigurable AUV for intervention missions: A~case study on underwater object recovery, Intell. Serv. Robotics 5(1), 19–31 (2012)CrossRefGoogle Scholar
  101. 25.101
    Trident: Marine Robots and Dexterous Manipulation for Enabling Autonomous Underwater Multipurpose Intervention Missions: Newsletter October 2012, (2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Ocean System Engineering Research DivisionKorea Research Institute of Ships & Ocean Engineering (KRISO)DaejeonKorea
  2. 2.National Agenda Research DivisionKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations