Skip to main content

Underwater Robots

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

Covering about two-thirds of the earth, the ocean is an enormous system that dominates processes on the Earth and has abundant living and nonliving resources, such as fish and subsea gas and oil. Therefore, it has a great effect on our lives on land, and the importance of the ocean for the future existence of all human beings cannot be overemphasized. However, we have not been able to explore the full depths of the ocean and do not fully understand the complex processes of the ocean. Having said that, underwater robots including remotely operated vehicles (GlossaryTerm

ROV

s) and autonomous underwater vehicles (GlossaryTerm

AUV

s) have received much attention since they can be an effective tool to explore the ocean and efficiently utilize the ocean resources. This chapter focuses on design issues of underwater robots including major subsystems such as mechanical systems, power sources, actuators and sensors, computers and communications, software architecture, and manipulators while Chap. 51 covers modeling and control of underwater robots.

figure a

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

ABS:

acrylonitrile–butadiene–styrene

AC:

alternating current

ADC:

analog digital conveter

ADCP:

acoustic Doppler current profiler

AFC:

alkaline fuel cell

AHRS:

attitude and heading reference system

AIP:

air-independent power

ARM:

Acorn RISC machine architecture

ASK:

amplitude shift keying

ASL:

autonomous systems laboratory

AUVAC:

Autonomous Undersea Vehicles Application Center

AUV:

autonomous underwater vehicle

AUVSI:

Association for Unmanned Vehicle Systems International

BMS:

battery management system

CAN:

controller area network

CFRP:

carbon fiber reinforced plastic

CORBA:

common object request broker architecture

CPU:

central processing unit

DAC:

digital analog converter

DC:

direct current

DMFC:

direct methanol fuel cell

DOF:

degree of freedom

DPSK:

differential phase shift keying

DSP:

digital signal processor

DVL:

Doppler velocity log

DWDM:

dense wave division multiplex

EPS:

expandable polystyrene

ERSP:

evolution robotics software platform

FEM:

finite element method

FFI:

Norwegian defense research establishment

FOG:

fiber-optic gyro

FPGA:

field-programmable gate array

FSK:

frequency shift keying

GFRP:

glass-fiber reinforced plastic

GIB:

GPS intelligent buoys

GMSK:

Gaussian minimum shift keying

GPS:

global positioning system

HD-SDI:

high-definition serial digital interface

HD:

high definition

HFAC:

high frequency alternating current

ICE:

internet communications engine

ID:

inside diameter

IFOG:

interferometric fiber-optic gyro

IMU:

inertial measurement unit

INS:

inertia navigation system

inertial navigation system

IO:

input output

IPC:

interprocess communication

ISA:

industrial standard architecture

ISE:

international submarine engineering

IvP:

interval programming

JAMSTEC:

Japan Agency for Marine-Earth Science and Technology

KRISO:

Korea Research Institute of Ships and Ocean Engineering

LBL:

long-baseline system

LCAUV:

long-range cruising AUV

LCM:

light-weight communications and marshalling

MASE:

Marine Autonomous Systems Engineering

MBARI:

Monterey Bay Aquarium Research Institute

MCFC:

molten carbonate fuel cell

MEMS:

microelectromechanical system

MFSK:

multiple FSK

MIRO:

middleware for robot

MIT:

Massachusetts Institute of Technology

MMC:

metal matrix composite

MOOS:

mission oriented operating suite

MPSK:

Mary phase shift keying

MQAM:

Mary quadrature amplitude modulation

MRDS:

Microsoft robotics developers studio

MSK:

minimum shift keying

NUWC:

Naval Undersea Warfare Center Division Newport

ODE:

open dynamics engine

OD:

outer diameter

ONR:

US Office of Naval Research

OPRoS:

open platform for robotic service

ORCA:

open robot control architecture

OROCOS:

open robot control software

PAFC:

phosphoric acid fuel cell

PCIe:

peripheral component interconnect express

PCI:

peripheral component interconnect

PC:

polycarbonate

PEFC:

polymer electrolyte fuel cell

PEMFC:

proton exchange membrane fuel cell

POM:

polyoxymethylene

PSK:

phase shift keying

PVC:

polyvinyl chloride

QAM:

quadrature amplitude modulation

QPSK:

quadrature phase shift keying

RISC:

reduced instruction set computer

RLG:

ring laser gyroscope

ROS:

robot operating system

ROV:

remotely operated vehicle

RT:

real-time

robot technology

SAS:

synthetic aperture sonar

SBL:

short baseline

SOFC:

solid oxide fuel cell

SOMA:

stream-oriented messaging architecture

T-REX:

teleo-reactive executive

TMS:

tether management system

TOA:

time of arrival

UDP:

user datagram protocol

UHD:

ultrahigh definition

UPnP:

universal plug and play

USBL:

ultrashort baseline

UUV:

unmanned underwater vehicle

VME:

Versa Module Europa

WHOI:

Woods Hole Oceanographic Institution

References

  1. J. Yuh, G. Marani, D.R. Blidberg: Applications of marine robotic vehicles, Intell. Serv. Robotics 4(4), 221–231 (2011)

    Article  Google Scholar 

  2. J. Yuh: Design and control of autonomous underwater robots: A survey, Auton. Robots 8(1), 7–24 (2000)

    Article  Google Scholar 

  3. S.W. Moore, H. Bohm, V. Jensen: Underwater Robotics: Science, Design and Fabrication (Marine Advanced Technology Education MATE Center, Monterey 2010)

    Google Scholar 

  4. R.D. Christ, R.L. Wernli: The ROV Manual: A User Guide for Observation Class Remotely Operated Vehicles (Elsevier, Amsterdam 2007)

    Google Scholar 

  5. K. Hardy, S. Weston, J. Sanderson: Under pressure: Testing before deployment is integral to success at sea, Sea Technol. 50(2), 19–25 (2009)

    Google Scholar 

  6. T. Hyakudome: Design of autonomous underwater vehicle, Int. J. Adv. Robotic Syst. 8(1), 131–139 (2011)

    Google Scholar 

  7. W.H. Wang, R.C. Engelaar, X.Q. Chen, J.G. Chase: The state-of-art of underwater vehicles – Theories and applications. In: Mobile Robots – State of the Art in Land, Sea, Air, and Collaborative Missions, ed. by X.Q. Chen, Y.Q. Chen, J.G. Chase (InTech, Rijeka 2009)

    Google Scholar 

  8. A.D. Bowen, D.R. Yoerger, C. Taylor, R. McCabe, J. Howland, D. Gomez-Ibanez, J.C. Kinsey, M. Heintz, G. McDonald, D.B. Peter, S.B. Fletcher, C. Young, J. Buescher, L.L. Whitcomb, S.C. Martin, S.E. Webster, M.V. Jakuba: The Nereus hybrid underwater robotic vehicle for global ocean science operations to 11,000 m depth, Proc. MTS/IEEE Ocean (2007)

    Google Scholar 

  9. T.J. Osse, T.J. Lee: Composite pressure hulls for autonomous underwater vehicles, Proc. MTS/IEEE Ocean (2007)

    Google Scholar 

  10. K. Hardy: Anodizing aluminum for underwater applications, Ocean News Technol. 15(3), 54–56 (2009)

    Google Scholar 

  11. S.M.A. Sharkh, G. Griffiths, A.T. Webb: Power sources for unmanned underwater vehicles. In: Technology and Applications of Autonomous Underwater Vehicles, ed. by G. Griffiths (Taylor Francis, New York 2002) pp. 19–35

    Google Scholar 

  12. H. Yoshida: Fundamentals of underwater vehicle hardware and their applications. In: Underwater Vehicles, ed. by A.V. Inzartsev (InTech, Rijeka 2009) pp. 557–582

    Google Scholar 

  13. L.L. Whitcomb: Underwater robotics: Out of the research laboratory and into the field, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 709–716

    Google Scholar 

  14. Ø. Hasvold, N.J. Størkersen, S. Forseth, T. Lian: Power sources for autonomous underwater vehicles, J. Power Sourc. 162(2), 935–942 (2006)

    Article  Google Scholar 

  15. A. Mendez, T.J. Leo, M.A. Herreros: Fuel cell power systems for autonomous underwater vehicles: State of the art, Proc. Int. Conf. Energy (2014)

    Google Scholar 

  16. K.L. Davies, R.M. Moore: Unmanned underwater vehicle fuel cell energy/power system technology assessment, IEEE J. Ocean Eng. 32(2), 365–372 (2007)

    Article  Google Scholar 

  17. H. Yoshida, T. Sawa, T. Hyakudome, S. Ishibashi, T. Tani, M. Iwata, T. Moriga: The high efficiency multi-less (HEML) fuel cell – A high energy source for underwater vehicles, buoys, and stations, Proc. MTS/IEEE Ocean (2011)

    Google Scholar 

  18. Q. Cai, D.J. Browning, D.J. Brett, N.P. Brandon: Hybrid fuel cell/battery power systems for underwater vehicles, Proc. 3rd SEAS DTC (2007)

    Google Scholar 

  19. K. E. Robinson: Li-poly pressure-tolerant batteries dive deep, Batter. Power Prod. Technol. 11(2), 999999 (2007)

    Google Scholar 

  20. M.C. Wrinch, M.A. Tomim, J. Marti: An analysis of sub sea electric power transmission techniques from DC to AC 50/60 Hz and beyond, Proc. MTS/IEEE Ocean. (2007)

    Google Scholar 

  21. N. Størkersen, Ø. Hasvold: Power sources for AUVs, Proc. Sci. Def. Conf. (2004)

    Google Scholar 

  22. S. Cohan: Trends in ROV development, Mar. Technol. Soc. J. 42(1), 38–43 (2008)

    Article  Google Scholar 

  23. E. Mellinger: Power system for new MBARI ROV, Proc. IEEE Oceans (1993) pp. 152–157

    Google Scholar 

  24. M.R. Arshad: Recent advancement in sensor technology for underwater applications, Indian J. Mar. Sci. 38(3), 267–273 (2009)

    Google Scholar 

  25. L. Lionel: Underwater robots part I: Current systems and problem pose. In: Mobile Robotics, ed. by A. Lazinica (InTech, Rijeka 2006) pp. 335–360

    Google Scholar 

  26. S.M.A. Sharkh: Propulsion systems for AUVs. In: Technology and Applications of Autonomous Underwater Vehicles, ed. by G. Griffiths (Taylor Francis, New York 2002) pp. 109–1255

    Chapter  Google Scholar 

  27. T. Schilling, W. Klassen, C. Barrett, J. Stanley: Power at depth: Efficient ROV power delivery and thrust generation for improved construction, repair, and maintenance support, Proc. Offshore Technol. Conf. (2005)

    Google Scholar 

  28. P.D. Groves: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (Artech House, Boston 2013)

    MATH  Google Scholar 

  29. F. Viksten: On the Use of an Accelerometer for Identification of a Flexible Manipulator, Master Thesis (Linköping Univ., Linköping 2001)

    Google Scholar 

  30. J. Romeo, G. Lester: Navigation is key to AUV missions, Sea Technol. 42(12), 24–30 (2001)

    Google Scholar 

  31. J.C. Kinsey, R.M. Eustice, L.L. Whitcomb: A~survey of underwater vehicle navigation: Recent advances and new challenges, Proc. Int. Conf. Manoeuvering Control Mar. Craft, Lisbon (2006)

    Google Scholar 

  32. C. Silpa-Anan, T. Brinsmead, S. Abdallah, A. Zelinsky: Preliminary experiments in visual servo control for autonomous underwater vehicle, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003) pp. 1824–1829

    Google Scholar 

  33. RTD Embedded Technologies, Inc., What is PC/104? http://www.rtd.com/PC104/Default.htm (2014)

  34. A. Kenny, G. Lopez: Advances in and extended application areas for Doppler sonar, Proc. MTS/IEEE Ocean. (2012)

    Google Scholar 

  35. E. Thurman, J. Riordan, D. Toal: Multi-sonar integration and the advent of senor intelligence. In: Advances in Sonar Technology, ed. by S.R. Silva (InTech, Rijeka 2009) pp. 151–164

    Google Scholar 

  36. Sound Metrics Corporation (Bellevue, WA): Didson Sonar, L http://www.soundmetrics.com/products/didson-sonars (2015)

  37. Y. Lee, T.G. Kim, H.-T. Choi: A~new approach of detection and recognition for artificial landmarks from noisy acoustic images, Adv. Intell. Syst. Comput. 274, 851–858 (2014)

    Google Scholar 

  38. A. Alcocer, P. Oliveira, A. Pascoal: Underwater acoustic positioning systems based on buoys with GPS, Proc. 8th Europ. Conf. Underw. Acoust., Vol. 8 (2006) pp. 1–8

    Google Scholar 

  39. L. Brun: ROV/AUV trends market and technology, Mar. Technol. Rep. 5(7), 48–51 (2012)

    Google Scholar 

  40. G. Verma, M. Kalra, S.K. Jain, D.A. Roy, B.B. Biswas: Embedded PC based controller for use in VME bus based data acquisition system, Proc. 9th Int. Workshop Pers. Comput. Part. Accel. Controls (2012) pp. 65–76

    Google Scholar 

  41. S.B. Williams, P. Newman, G. Dissanayake, J. Rosenblatt, H. Durrant-Whyte: A~decoupled, distributed auv control architecture, Int. Symp. Robotics 31, 246–251 (2000)

    Google Scholar 

  42. H.-T. Choi, A. Hanai, S.K. Choi, J. Yuh: Development of an underwater robot, ODIN-III. Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (2003) pp. 836–841

    Google Scholar 

  43. D. Lee, G. Kim, D. Kim, H. Myung, H. Choi: Vision-based object detection and tracking for autonomous navigation of underwater robots, Ocean Eng. 48, 59–68 (2012)

    Article  Google Scholar 

  44. Xilinx, Inc.: Zynq-7000 all programmable SoC, http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm (2014)

  45. B. Benson, Y. Li, R. Kastner, B. Faunce, K. Domond, D. Kimball, C. Schurgers: Design of a~low-cost, underwater acoustic modem for short-range sensor networks, Proc. MTS/IEEE Ocean. (2010)

    Google Scholar 

  46. D.B. Kilfoyle, A.B. Baggeroer: The state of the art in underwater acoustic telemetry, IEEE J. Ocean. Eng. 25(1), 4–27 (2000)

    Article  Google Scholar 

  47. Z. Jiang: Underwater acoustic networks–issues and solutions, Int. J. Intell. Control Syst. 13(3), 152–161 (2008)

    Google Scholar 

  48. M.W. Doniec, A. Xu, D. Rus: Robust real-time high definition underwater video streaming with AquaOptical II, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Karlsruhe (2013)

    Google Scholar 

  49. J.W. Nicholson, A.J. Healey: The present state of autonomous underwater vehicle (AUV) applications and technologies, Mar. Technol. Soc. J. 42(1), 44–51 (2008)

    Article  Google Scholar 

  50. W.D. Smart: Is a~common middleware for robotics possible?, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2007)

    Google Scholar 

  51. K.P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru, G.A. Demetriou: Control architectures for autonomous underwater vehicles, IEEE Control Syst. 17(6), 48–64 (1997)

    Article  Google Scholar 

  52. P. Ridao, J. Yuh, J. Batlle, K. Sugihara: On AUV control architecture, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2000) pp. 855–860

    Google Scholar 

  53. C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, R. McEwen: T-rex: A~model-based architecture for AUV control, Proc. 3rd Workshop Plan. Plan Exec. Real-World Syst. (2007)

    Google Scholar 

  54. E.F. Perdomo, J.C. Gámez, A.C.D. Brito, D.H. Sosa: Mission specification in underwater robotics, J. Phys. Agents 4(1), 25–34 (2010)

    Google Scholar 

  55. M.L. Seto (Ed.): Marine Robot Autonomy (Springer, New York 2013)

    Google Scholar 

  56. D. Goldberg: Huxley: A~flexible robot control architecture for autonomous underwater vehicles, Proc. MTS/IEEE Ocean. (2011)

    Google Scholar 

  57. B.S. Bingham, J.M. Walls, R.M. Eustice: Development of a~flexible command and control software architecture for marine robotic applications, Mar. Technol. Soc. J. 45(3), 25–36 (2011)

    Article  Google Scholar 

  58. MOOS-IvP: http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php

  59. M.R. Benjamin, H. Schmidt, P.M. Newman, J.J. Leonard: Nested autonomy for unmanned marine vehicles with MOOS-IvP, J. Field Robotics 27(6), 834–875 (2010)

    Article  Google Scholar 

  60. C. Lin, X. Feng, Y. Li, K. Liu: Toward a~generalized architecture for unmanned underwater vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 2368–2373

    Google Scholar 

  61. N. Mohamed, J. Al-Jaroodi, I. Jawhar: Middleware for robotics: A~survey, Proc. IEEE Conf. Robotics, Autom. Mechatron. (2008) pp. 736–742

    Google Scholar 

  62. M. Namoshe, N.S. Tlale, C.M. Kumile, G. Bright: Open middleware for robotics, Proc. 5th Int. Conf. Mechatron. Mach. Vis. Pract. (2008) pp. 189–194

    Google Scholar 

  63. D. Brugali, G.S. Broten, A. Cisternino, D. Colombo, J. Fritsch, B. Gerkey, G. Kraetzschmar, R. Vaughan, H. Utz: Trends in robotic software frameworks. In: Software Engineering for Experimental Robotics, ed. by D. Brugali (Springer, Berlin, Heidelberg 2007) pp. 259–266

    Chapter  Google Scholar 

  64. A. Elkady, T. Sobh: Robotics middleware: A~comprehensive literature survey and attribute-based bibliography, J. Robotics 2012, 959013 (2012)

    Article  Google Scholar 

  65. S. Kim, H.-T. Choi, J.-W. Lee, Y.J. Lee: Design, implementation, and experiment of an underwater robot for effective inspection of underwater structures, Proc. 2nd Int. Conf. Robot Intell. Technol. Appl. (2013)

    Google Scholar 

  66. T.W. Kim, J. Yuh, G. Marani: Underwater vehicle manipulators. In: Springer Handbook of Ocean Engineering, ed. by M. Dhanak, N. Xiros (Springer, Berlin, Heidelberg, 2016), in press.

    Google Scholar 

  67. N. Kato, D.M. Lane: Coordinated control of multiple manipulators in underwater robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 3 (1996) pp. 2505–2510

    Chapter  Google Scholar 

  68. M.W. Dunnigan, D.M. Lane, A.C. Clegg, I. Edwards: Hybrid position/force control of a~hydraulic underwater manipulator, Proc. IEEE Control Theory Appl. 143, 145–151 (1996)

    Article  MATH  Google Scholar 

  69. B. Lévesque, M.J. Richard: Dynamic analysis of a manipulator in a~fluid environment, Int. J. Robotics Res. 13(3), 221–231 (1994)

    Article  Google Scholar 

  70. H. Mahesh, J. Yuh, R. Lakshmi: A~coordinated control of an underwater vehicle and robotic manipulator, J. Robotics Syst. 8(3), 339–370 (1991)

    Article  MATH  Google Scholar 

  71. S. McMillan, D.E. Orin, R.B. McGhee: Efficient dynamic simulation of an underwater vehicle with a robotic manipulator, IEEE Trans. Syst. Man Cybern. 25(8), 1194–1206 (1995)

    Article  Google Scholar 

  72. T.W. McLain, S.M. Rock, M.J. Lee: Experiments in the coordinated control of an underwater arm/vehicle system, Autom. Robotics 3, 213–232 (1996)

    Google Scholar 

  73. T.J. Tarn, G.A. Shoults, S.P. Yang: A~dynamic model of an underwater vehicle with a~robotic manipulator using kanes method, Autom. Robot. 3, 269–283 (1996)

    Google Scholar 

  74. K. Ioi, K. Itoh: Modelling and simulation of an underwater manipulator, Adv. Robot. 4(4), 303–317 (1989)

    Article  Google Scholar 

  75. I. Schjølberg, T.I. Fossen: Modelling and control of underwater vehicle-manipulator systems, Proc. 3rd Conf. Mar. Craft Manoeuvering Control (1994)

    Google Scholar 

  76. K.N. Leabourne, S.M. Rock: Model development of an underwater manipulator for coordinated arm-vehicle control, Proc. MTS/IEEE Ocean., Vol. 2 (1998) pp. 941–946

    Google Scholar 

  77. M. Lee, H.-S. Choi: A~robust neural controller for underwater robot manipulators, IEEE Trans. Neural Netw. 11(6), 1465–1470 (2000)

    Article  Google Scholar 

  78. J.-H. Ryu, D.-S. Kwon, P.-M. Lee: Control of underwater manipulators mounted on an ROV using base force information, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 4 (2001) pp. 3238–3243

    Google Scholar 

  79. M.H. Patel: Dynamics of Offshore Structures (Butterworths, London 1989)

    Google Scholar 

  80. A.W. Troesch, S.K. Kim: Hydrodynamic forces acting on cylinders oscillating at small amplitudes, J. Fluids Struct. 5(1), 113–126 (1991)

    Article  Google Scholar 

  81. M. Hildebrandt, L. Christensen, J. Kerdels, J. Albiez, F. Kirchner: Realtime motion compensation for ROV-based teleoperated underwater manipulators, Proc. MTS/IEEE Ocean. Eur. (2009) pp. 1–6

    Google Scholar 

  82. O. Brock, R. Grupen: Final Report of NSF/NASA Workshop on Autonomous Mobile Manipulation (AMM) (Univ. of Massachusetts, Amherst 2005)

    Google Scholar 

  83. G. Antonelli: Underwater Robots, Springer Tracts in Advanced Robotics, Vol. 96, 3rd edn. (Springer, Berlin, Heidelberg 2014)

    Book  Google Scholar 

  84. M. Carreras, J. Yuh, J. Batlle, P. Ridao: A~behavior-based scheme using reinforcement learning for autonomous underwater vehicles, IEEE J. Ocean. Eng. 30(2), 416–427 (2005)

    Article  Google Scholar 

  85. M. Carreras, J. Yuh, J. Batlle, P. Ridao: Application of SONQL for real-time learning of robot behaviors, Robots Auton. Syst. 55(8), 628–642 (2007)

    Article  Google Scholar 

  86. S. Zhao, J. Yuh: Experimental study on advanced underwater robot control, IEEE Trans. Robotics 21(4), 695–703 (2005)

    Article  Google Scholar 

  87. A. Hanai, H.-T. Choi, S.K. Choi, J. Yuh: Experimental study on fine motion control of underwater robots, Adv. Robotics 18(10), 963–978 (2004)

    Article  Google Scholar 

  88. T.W. Kim, J. Yuh: Application of on-line neuro-fuzzy controller to AUVs, Inf. Sci. 145(1), 169–182 (2002)

    Article  MATH  Google Scholar 

  89. C.S.G. Lee, J.-S. Wang, J. Yuh: Self-adaptive neuro-fuzzy systems for autonomous underwater vehicle control, Adv. Robotics 15(5), 589–608 (2001)

    Article  Google Scholar 

  90. J. Yuh, J. Nie: Application of non-regressor-based adaptive control to underwater robots: Experiment, Comput. Electr. Eng. 26(2), 169–179 (2000)

    Article  Google Scholar 

  91. K.C. Yang, J. Yuh, S.K. Choi: Fault-tolerant system design of an autonomous underwater vehicle ODIN: An experimental study, Int. J. Syst. Sci. 30(9), 1011–1019 (1999)

    Article  MATH  Google Scholar 

  92. H.H. Wang, S.M. Rock, M.J. Lees: Experiments in automatic retrieval of underwater objects with an AUV, Proc. MTS/IEEE Ocean., Vol. 1 (1995) pp. 366–373

    Google Scholar 

  93. J. Evans, P. Redmond, C. Plakas, K. Hamilton, D. Lane: Autonomous docking for intervention-AUVs using sonar and video-based real-time 3D pose estimation, Proc. MTS/IEEE Ocean., Vol. 4 (2003) pp. 2201–2210

    Google Scholar 

  94. G. Marani, S.K. Choi, J. Yuh: Underwater autonomous manipulation for intervention missions AUVs, Ocean Eng. 36(1), 15–23 (2009)

    Article  Google Scholar 

  95. G. Marani, J. Yuh, S.K. Choi: Autonomous manipulation for an intervention AUV. In: Advances in Unmanned Marine Vehicles, IEE Control Engineering Series, ed. by B. Sutton, G. Roberts (Institution of Engineering and Technology, London 2006) pp. 217–237

    Chapter  Google Scholar 

  96. G. Marani, S.K. Choi, J. Yuh: Real-time center of buoyancy identification for optimal hovering in autonomous underwater intervention, Intell. Serv. Robotics 3(3), 175–182 (2010)

    Article  Google Scholar 

  97. D. Beciri: SAUVIM robot completed its first fully autonomous mission, http://www.robaid.com/search/SAUVIM (2010)

  98. P. Sanz, R. Ridao, G. Oliver, P. Casalino, C. Insaurralde, C. Silvestre, C. Melchiorri, A. Turetta: TRIDENT: Recent improvements about autonomous underwater intervention missions, Proc. IFAC Workshop Navig. Guid. Control Underw. Veh. (NGCUV) (2012)

    Google Scholar 

  99. D. Ribas, N. Palomeras, P. Ridao, M. Carreras, A. Mallios: Girona 500 AUV: From survey to intervention, IEEE/ASME Trans. Mechatron. 17(1), 46–53 (2012)

    Article  Google Scholar 

  100. M. Prats, D. Ribas, N. Palomeras, J.C. Garcia, V. Nannen, S. Wirth, J.J. Fernañdez, J.P. Beltrañ, R. Campos, P. Ridao, P.J. Sanz, G. Oliver, M. Carreras, N. Gracias, R. Marín, A. Ortiz: Reconfigurable AUV for intervention missions: A~case study on underwater object recovery, Intell. Serv. Robotics 5(1), 19–31 (2012)

    Article  Google Scholar 

  101. Trident: Marine Robots and Dexterous Manipulation for Enabling Autonomous Underwater Multipurpose Intervention Missions: Newsletter October 2012, http://www.irs.uji.es/trident/files/2nd-TRIDENT-SCHOOL-Newsletter-Oct2012_OnlinePDF.pdf (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Taek Choi .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Six-legged waking underwater robot, Crabster available from http://handbookofrobotics.org/view-chapter/25/videodetails/793

:

Preliminary results of sonar-based SLAM using landmarks available from http://handbookofrobotics.org/view-chapter/25/videodetails/794

:

First record of deep-sea diving of Hamire, depth was 5882m available from http://handbookofrobotics.org/view-chapter/25/videodetails/796

:

Preliminary experimental result of an ROV, iTurtle available from http://handbookofrobotics.org/view-chapter/25/videodetails/797

:

Preliminary experimental result of an AUV, yShark2 available from http://handbookofrobotics.org/view-chapter/25/videodetails/799

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Choi, HT., Yuh, J. (2016). Underwater Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics