Wheeled Robots

  • Woojin ChungEmail author
  • Karl Iagnemma
Part of the Springer Handbooks book series (SHB)


The purpose of this chapter is to introduce, analyze, and compare various wheeled mobile robots (WMR s) and to present several realizations and commonly encountered designs. The mobility of WMR is discussed on the basis of the kinematic constraints resulting from the pure rolling conditions at the contact points between the wheels and the ground. Practical robot structures are classified according to the number of wheels, and features are introduced focusing on commonly adopted designs. Omnimobile robot and articulated robots realizations are described. Wheel–terrain interaction models are presented in order to compute forces at the contact interface. Four possible wheel-terrain interaction cases are shown on the basis of relative stiffness of the wheel and terrain. A suspension system is required to move on uneven surfaces. Structures, dynamics, and important features of commonly used suspensions are explained.


Mobile Robot Nonslip Condition Caster Wheel Omnidirectional Mobile Robot Rigid Wheel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

instantaneous center of rotation


wheeled mobile robot


  1. 24.1
    H. Asama, M. Sato, L. Bogoni: Development of an omnidirectional mobile robot with 3 DOF decoupling drive mechanism, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 1925–1930Google Scholar
  2. 24.2
    L. Ferriere, G. Campion, B. Raucent: ROLLMOBS, a new drive system for omnimobile robots, Robotica 19, 1–9 (2001)CrossRefGoogle Scholar
  3. 24.3
    W. Chung: Nonholonomic Manipulators, Springer Tracts Adv. Robotics, Vol. 13 (Springer, Berlin, Heidelberg 2004)Google Scholar
  4. 24.4
    J.E. Colgate, M. Peshkin, W. Wannasuphoprasit: Nonholonomic haptic display, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 539–544CrossRefGoogle Scholar
  5. 24.5
    G. Campion, G. Bastin, B. dAndrea-Novel: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Trans. Robotics Autom. 12, 47–62 (1996)CrossRefGoogle Scholar
  6. 24.6
    R. Nakajima, T. Tsubouchi, S. Yuta, E. Koyanagi: A development of a new mechanism of an autonomous unicycle, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1997) pp. 906–912Google Scholar
  7. 24.7
    G.C. Nandy, X. Yangsheng: Dynamic model of a gyroscopic wheel, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 2683–2688Google Scholar
  8. 24.8
    Y. Ha, S. Yuta: Trajectory tracking control for navigation of self-contained mobile inverse pendulum, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1994) pp. 1875–1882CrossRefGoogle Scholar
  9. 24.9
    Y. Takahashi, T. Takagaki, J. Kishi, Y. Ishii: Back and forward moving scheme of front wheel raising for inverse pendulum control wheel chair robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 3189–3194Google Scholar
  10. 24.10
    K.-S. Byun, S.-J. Kim, J.-B. Song: Design of continuous alternate wheels for omnidirectional mobile robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 767–772Google Scholar
  11. 24.11
    M. West, H. Asada: Design and control of ball wheel omnidirectional vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 1931–1938Google Scholar
  12. 24.12
    B. Carlisle: An omnidirectional mobile robot. In: Development in Robotics, ed. by B. Rooks (IFS, Bedford 1983) pp. 79–87Google Scholar
  13. 24.13
    M. Wada, S. Mori: Holonomic and omnidirectional vehicle with conventional tires, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 3671–3676CrossRefGoogle Scholar
  14. 24.14
    D.B. Reister, M.A. Unseren: Position and constraint force control of a vehicle with two or more steerable drive wheels, IEEE Trans. Robotics Autom. 9(6), 723–731 (1993)CrossRefGoogle Scholar
  15. 24.15
    Y. Nakamura, H. Ezaki, Y. Tan, W. Chung: Design of steering mechanism and control of nonholonomic trailer systems, IEEE Trans. Robotics Autom. 17(3), 367–374 (2001)CrossRefGoogle Scholar
  16. 24.16
    S. Hirose: Biologically Inspired Robots: Snake-Like Locomotion and Manipulation (Oxford Univ. Press, Oxford 1993)Google Scholar
  17. 24.17
    R. Siegwart, P. Lamon, T. Estier, M. Lauria, R. Piguet: Innovative design for wheeled locomotion in rough terrain, J. Robotics Auton. Syst. 40, 151–162 (2003)CrossRefGoogle Scholar
  18. 24.18
    M.G. Bekker: Introduction to Terrain-Vehicle Systems (Univ. Michigan Press, Ann Arbor 1969)Google Scholar
  19. 24.19
    H. Shibly, K. Iagnemma, S. Dubowsky: An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers, J. Terramech. 42, 1–13 (2005)CrossRefGoogle Scholar
  20. 24.20
    G. Ishigami, A. Miwa, K. Nagatani, K. Yoshida: Terramechanics-based for steering maneuver of planetary exploration rovers on loose soil, J. Field Robotics 24(3), 233–250 (2007)CrossRefGoogle Scholar
  21. 24.21
    G. Meirion-Griffith, M. Spenko: A modified pressure-sinkage model for small, rigid wheels on deformable terrains, J. Terramech. 48(2), 149–155 (2011)CrossRefGoogle Scholar
  22. 24.22
    C. Senatore, M. Wulfmeier, P. Jayakumar, J. Maclennan, K. Iagnemma: Investigation of stress and failure in granular soils for lightweight robotic vehicle applications, Proc. Ground Vehicle Syst. Eng. Technol. Symp. (2012)Google Scholar
  23. 24.23
    C. Harnisch, B. Lach, R. Jakobs, M. Troulis, O. Nehls: A new tyre–soil interaction model for vehicle simulation on deformable ground, Vehicle Syst. Dyn. 43(1), 384–394 (2005)CrossRefGoogle Scholar
  24. 24.24
    J.Y. Wong: Theory of Ground Vehicles, 3rd edn. (Wiley, Hoboken 2001)Google Scholar
  25. 24.25
    C. Senatore, C. Sandu: Off-road tire modeling and the multi-pass effect for vehicle dynamics simulation, J. Terramech. 48(4), 265–276 (2011)CrossRefGoogle Scholar
  26. 24.26
    H.B. Pacejka: Tire and Vehicle Dynamics, 2nd edn. (Elsevier, Oxford 2005)Google Scholar
  27. 24.27
    P. Barak: Magic Numbers in Design of Suspensions for Passenger Cars, SAE Tech. Pap. No. 911921 (SAE, Warrendale 1991) Google Scholar
  28. 24.28
    J.C. Dixon: Suspension Geometry and Computation (Wiley, Chichester 2009)CrossRefzbMATHGoogle Scholar
  29. 24.29
    J.K. Hedrick, T. Butsuen: Invariant properties of automotive suspensions, Proc. Inst. Mech. Eng. Part D J. Automob, Eng. 204(1), 21–27 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKorea UniversitySeoulKorea
  2. 2.Laboratory for Manufacturing and ProductivityMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations