Design and Performance Evaluation

  • Jorge AngelesEmail author
  • Frank C. Park
Part of the Springer Handbooks book series (SHB)


In this chapter we survey some of the tools and criteria used in the mechanical design and performance evaluation of robots. Our focus is on robots that are (a) primarily intended for manipulation tasks and (b) constructed with one or more serial kinematic chains. The kinematics of parallel robots is addressed in detail in Chap.  18; their elastostatics is the subject of Sect. 16.5.1. Wheeled robots, walking robots, multifingered hands, and robots intended for outdoor applications, i. e., those encompassing what is known as field robotics, are studied in their own chapters; here we provide an overview of the main classes of these robots as relating to design.


Stiffness Matrix Parallel Robot Robot Design Serial Robot Delta Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.









autonomous guided vehicle


advanced step in innovative mobility


adaptive suspension vehicle


all-terrain hex-legged extra-terrestrial explorer


base plate


computer-aided engineering




degree of freedom




finite element analysis


generalized-inertia ellipsoid


Gough–Stewart platform


multiappendage robotic system


microelectromechanical system


moving plate


National Aeronautics and Space Agency


Ohio State University


parallel kinematics machine


quest for curiosity


rover chassis prototype


selective compliance assembly robot arm


spherical, prismatic, universal


unmanned aerial vehicle


  1. 16.1
    O. Bottema, B. Roth: Theoretical Kinematics (North-Holland, Amsterdam 1979), also available by Dover Publishing, New York 1990zbMATHGoogle Scholar
  2. 16.2
    J. Angeles: The qualitative synthesis of parallel manipulators, ASME J. Mech. Des. 126(4), 617–624 (2004)CrossRefGoogle Scholar
  3. 16.3
    R. Hartenberg, J. Denavit: Kinematic Synthesis of Linkages (McGraw-Hill, New York 1964)zbMATHGoogle Scholar
  4. 16.4
    G. Pahl, W. Beitz: Engineering Design. A Systematic Approach, 3rd edn. (Springer, London 2007), translated from the original Sixth Edition in GermanGoogle Scholar
  5. 16.5
    M. Petterson, J. Andersson, P. Krus, X. Feng, D. Wäppling: Industrial robot design optimization in the conceptual design phase, Proc. IEEE Int. Conf. Mechatron. Robotics, Vol. 2, ed. by P. Drews (2004) pp. 125–130Google Scholar
  6. 16.6
    R. Clavel: Device for the movement and positioning of an element in space, US Patent 4976582 (1990)Google Scholar
  7. 16.7
    R. Vijaykumar, K.J. Waldron, M.J. Tsai: Geometric optimization of serial chain manipulator structures for working volume and dexterity, Int. J. Robotics Res. 5(2), 91–103 (1986)CrossRefGoogle Scholar
  8. 16.8
    J.P. Merlet: Parallel Robots (Kluwer, Boston 2006)zbMATHGoogle Scholar
  9. 16.9
    J. Angeles: Fundamentals of Robotic Mechanical Systems, 3rd edn. (Springer, New York 2007)CrossRefzbMATHGoogle Scholar
  10. 16.10
    K. Hoffman: Analysis in Euclidean Space (Prentice Hall, Englewood Cliffs 1975)zbMATHGoogle Scholar
  11. 16.11
    L. Burmester: Lehrbuch der Kinematik (Arthur Felix, Leipzig 1886)zbMATHGoogle Scholar
  12. 16.12
    J.M. McCarthy: Geometric Design of Linkages (Springer, New York 2000)zbMATHGoogle Scholar
  13. 16.13
    J. Angeles: Is there a characteristic length of a rigid-body displacement?, Mech. Mach. Theory 41, 884–896 (2006)CrossRefzbMATHGoogle Scholar
  14. 16.14
    H. Li: Ein Verfahren zur vollständigen Lösung der Rückwärtstransformation für Industrieroboter mit allegemeiner Geometrie, Ph.D. Thesis (Universität-Gesamthochschule Duisburg, Duisburg 1990)Google Scholar
  15. 16.15
    M. Raghavan, B. Roth: Kinematic analysis of the 6R manipulator of general geometry, Proc. 5th Int. Symp. Robotics Res., ed. by H. Miura, S. Arimoto (MIT, Cambridge 1990)Google Scholar
  16. 16.16
    J. Angeles: The degree of freedom of parallel robots: A group-theoretic approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Barcelona (2005) pp. 1017–1024Google Scholar
  17. 16.17
    C.C. Lee, J.M. Hervé: Translational parallel manipulators with doubly planar limbs, Mech. Mach. Theory 41, 433–455 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 16.18
    B. Roth: Performance evaluation of manipulators from a kinematic viewpoint, National Bureau of Standards -- NBS SP 495, 39–62 (1976)Google Scholar
  19. 16.19
    A. Kumar, K.J. Waldron: The workspaces of a mechanical manipulator, ASME J. Mech. Des. 103, 665–672 (1981)CrossRefGoogle Scholar
  20. 16.20
    D.C.H. Yang, T.W. Lee: On the workspace of mechanical manipulators, ASME J. Mech. Trans. Autom. Des. 105, 62–69 (1983)CrossRefGoogle Scholar
  21. 16.21
    Y.C. Tsai, A.H. Soni: An algorithm for the workspace of a general n-R robot, ASME J. Mech. Trans. Autom. Des. 105, 52–57 (1985)CrossRefGoogle Scholar
  22. 16.22
    K.C. Gupta, B. Roth: Design considerations for manipulator workspace, ASME J. Mech. Des. 104, 704–711 (1982)CrossRefGoogle Scholar
  23. 16.23
    K.C. Gupta: On the nature of robot workspace, Int. J. Robotics Res. 5(2), 112–121 (1986)CrossRefGoogle Scholar
  24. 16.24
    F. Freudenstein, E. Primrose: On the analysis and synthesis of the workspace of a three-link, turning-pair connected robot arm, ASME J. Mech. Trans. Autom. Des. 106, 365–370 (1984)CrossRefGoogle Scholar
  25. 16.25
    C.C. Lin, F. Freudenstein: Optimization of the workspace of a three-link turning-pair connected robot arm, Int. J. Robotics Res. 5(2), 91–103 (1986)CrossRefGoogle Scholar
  26. 16.26
    T. Yoshikawa: Manipulability of robotic mechanisms, Int. J. Robotics Res. 4(2), 3–9 (1985)CrossRefGoogle Scholar
  27. 16.27
    J. Loncaric: Geometric Analysis of Compliant Mechanisms in Robotics, Ph.D. Thesis (Harvard University, Cambridge 1985)Google Scholar
  28. 16.28
    B. Paden, S. Sastry: Optimal kinematic design of 6R manipulators, Int. J. Robotics Res. 7(2), 43–61 (1988)CrossRefGoogle Scholar
  29. 16.29
    J.K. Salisbury, J.J. Craig: Articulated hands: Force control and kinematic issues, Int. J. Robotics Res. 1(1), 4–17 (1982)CrossRefGoogle Scholar
  30. 16.30
    G.H. Golub, C.F. Van Loan: Matrix Computations (Johns Hopkins Univ. Press, Baltimore 1989)zbMATHGoogle Scholar
  31. 16.31
    G. Strang: Linear Algebra and Its Applications, 3rd edn. (Harcourt Brace Jovanovich, San Diego 1988)zbMATHGoogle Scholar
  32. 16.32
    A. Dubrulle: An optimum iteration for the matrix polar decomposition, Electron. Trans. Numer. Anal. 8, 21–25 (1999)MathSciNetzbMATHGoogle Scholar
  33. 16.33
    W.A. Khan, J. Angeles: The kinetostatic optimization of robotic manipulators: The inverse and the direct problems, ASME J. Mech. Des. 128, 168–178 (2006)CrossRefGoogle Scholar
  34. 16.34
    H. Pottmann, J. Wallner: Computational Line Geometry (Springer, Berlin, Heidelberg 2001)zbMATHGoogle Scholar
  35. 16.35
    H. Asada: A geometrical representation of manipulator dynamics and its application to arm design, Trans. ASME J. Dyn. Sys. Meas. Contr. 105(3), 131–135 (1983)CrossRefzbMATHGoogle Scholar
  36. 16.36
    T. Yoshikawa: Dynamic manipulability of robot manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1985) pp. 1033–1038Google Scholar
  37. 16.37
    P.A. Voglewede, I. Ebert-Uphoff: Measuring closeness to singularities for parallel manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 4539–4544Google Scholar
  38. 16.38
    A. Bowling, O. Khatib: The dynamic capability equations: A new tool for analyzing robotic manipulator performance, IEEE Trans. Robotics 21(1), 115–123 (2005)CrossRefGoogle Scholar
  39. 16.39
    C.M. Gosselin, J. Angeles: A new performance index for the kinematic optimization of robotic manipulators, Proc. 20th ASME Mech. Conf. (1988) pp. 441–447Google Scholar
  40. 16.40
    C. Gosselin, J. Angeles: The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator, ASME J. Mech. Trans. Autom. Des. 110, 35–41 (1988)CrossRefGoogle Scholar
  41. 16.41
    A. Bicchi, C. Melchiorri, D. Balluchi: On the mobility and manipulability of general multiple limb robots, IEEE Trans. Robotics Autom. 11(2), 232–235 (1995)CrossRefGoogle Scholar
  42. 16.42
    P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Global task space manipulability ellipsoids for multiple-arm systems, IEEE Trans. Robotics Autom. 7, 678–685 (1991)CrossRefGoogle Scholar
  43. 16.43
    C. Melchiorri: Comments on Global task space manipulability ellipsoids for multiple-arm systems and further considerations, IEEE Trans. Robotics Autom. 9, 232–235 (1993)CrossRefGoogle Scholar
  44. 16.44
    P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Reply to comments on Global task space manipulability ellipsoids for multiple-arm systems' and further considerations, IEEE Trans. Robotics Autom. 9, 235–236 (1993)Google Scholar
  45. 16.45
    F.C. Park: Optimal robot design and differential geometry, ASME J. Mech. Des. 117, 87–92 (1995)CrossRefGoogle Scholar
  46. 16.46
    F.C. Park, J. Kim: Manipulability of closed kinematic chains, ASME J. Mech. Des. 120(4), 542–548 (1998)CrossRefGoogle Scholar
  47. 16.47
    A. Liégeois: Automatic supervisory control for the configuration and behavior of multibody mechanisms, IEEE Trans. Sys. Man. Cyber. 7(12), 842–868 (1977)zbMATHGoogle Scholar
  48. 16.48
    C.A. Klein, C.H. Huang: Review of pseudo-inverse control for use with kinematically redundant manipulators, IEEE Trans. Syst. Man Cybern. 13(2), 245–250 (1983)CrossRefGoogle Scholar
  49. 16.49
    J.M. Hollerbach: Optimum kinematic design of a seven degree of freedom manipulator. In: Robotics Research: The Second International Symposium, ed. by H. Hanafusa, H. Inoue (MIT, Cambridge 1985)Google Scholar
  50. 16.50
    M.W. Spong: Remarks on robot dynamics: Canonical transformations and riemannian geometry, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992) pp. 454–472Google Scholar
  51. 16.51
    T.J. Graettinger, B.H. Krogh: The acceleration radius: A global performance measure for robotic manipulators, IEEE J. Robotics Autom. 4(11), 60–69 (1988)CrossRefGoogle Scholar
  52. 16.52
    M. Griffis, J. Duffy: Global stiffness modeling of a class of simple compliant couplings, Mech. Mach. Theory 28, 207–224 (1993)CrossRefGoogle Scholar
  53. 16.53
    S. Howard, M. Zefran, V. Kumar: On the $6\times 6$ cartesian stiffness matrix for three-dimensional motions, Mech. Mach. Theory 33, 389–408 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 16.54
    L. Meirovitch: Fundamentals of vibrations (McGraw-Hill, Boston 2001)Google Scholar
  55. 16.55
    C.M. Gosselin, J.-F. Hamel: The agile eye: A high-performance three-degree-of-freedom camera-orienting device, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 781–786Google Scholar
  56. 16.56
    O. Company, F. Pierrot, T. Shibukawa, K. Morita: Four-Degree-of-Freedom Parallel Robot, EU Patent No. EP 1084802 (2001)Google Scholar
  57. 16.57
    X. Kong, C. Gosselin: Type synthesis of parallel mechanisms, Springer Tract. Adv. Robotics, Vol. 33 (Springer, Berlin, Heidelberg 2007)zbMATHGoogle Scholar
  58. 16.58
    J. Hervé: The Lie group of rigid body displacements, a fundamental tool for mechanism design, Mech. Mach. Theory 34, 719–730 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 16.59
    W.A. Khan, J. Angeles: A novel paradigm for the qualitative synthesis of simple kinematic chains based on complexity measures, ASME J. Mech. Robotics 3(3), 0310161–03101611 (2011)Google Scholar
  60. 16.60
    J. Lončarivc: Normal forms of stiffness and compliance matrices, IEEE J. Robotics Autom. 3(6), 567–572 (1987)CrossRefGoogle Scholar
  61. 16.61
    X. Ding, J.M. Selig: On the compliance of coiled springs, Int. J. Mech. Sci. 46, 703–727 (2004)CrossRefzbMATHGoogle Scholar
  62. 16.62
    J.M. Selig: The spatial stiffness matrix from simple stretched springs, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 3314–3319Google Scholar
  63. 16.63
    J. Angeles: On the nature of the Cartesian stiffness matrix, Rev. Soc. Mex. Ing. Mec. 3(5), 163–170 (2010)Google Scholar
  64. 16.64
    A.K. Pradeep, P.J. Yoder, R. Mukundan: On the use of dual-matrix exponentials in robotic kinematics, Int. J. Robotics Res. 8(5), 57–66 (1989)CrossRefGoogle Scholar
  65. 16.65
    A. Taghvaeipour, J. Angeles, L. Lessard: On the elastostatic analysis of mechanical systems, Mech. Mach. Theory 58, 202–216 (2013)CrossRefGoogle Scholar
  66. 16.66
    D. Zwillinger (Ed.): CRC Standard Mathematical Tables and Formulae, 31st edn. (CRC, Boca Raton 2002)zbMATHGoogle Scholar
  67. 16.67
    B. Christensen: Robotic lunar base with legs changes everything,
  68. 16.68
    L. Wen, T. Wang, G. Wu, J. Li: A novel method based on a force-feedback technique for the hydrodynamic investigation of kinematic effects on robotic fish, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011), Paper No. 0828Google Scholar
  69. 16.69
    L.L. Hines, V. Arabagi, M. Sitti: Free-flight simulation and pitch-and-roll control experiments of a sub-gram flapping-flight micro aerial vehicle, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011), Paper No. 0602Google Scholar
  70. 16.70
    C.E. Thorne, M. Yim: Towards the dvelopment of gyroscopically controled micro air vehicles, Proc. 2011 IEEE Int. Conf. Robotics Autom. (2011), Paper No. 1800Google Scholar
  71. 16.71
    T. Lee, M. Leok, N.H. McClamroch: Geometric tracking control of a quadrotor UAV on SE(3), Proc. 49th IEEE Conf. Decis. Control (2010)Google Scholar
  72. 16.72
    Robots take flight: Quadroto unmanned aerial vehicles, IEEE Robotics Autom. Mag. 19(3) (2012),

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Centre for Intelligent MachinesMcGill UniversityMontrealCanada
  2. 2.Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations