Skip to main content

Fatigue Crack Growth Under Service Loads

  • Chapter
  • First Online:
Fatigue Crack Growth

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 227))

  • 2569 Accesses

Abstract

Crack growth simulations and residual life predictions often only take constant amplitude loads into account as described in Chap. 4. During its operating period however, a component is exposed to service loads comprising various load changes such as overloads and underloads, block loads or changes in load direction. These do not generally occur regularly, but are occasional effects ensuing from the overall usage scenario. Such service loads lead to interaction effects that can extend or reduce residual life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klätschke, H.: Ableitung und Generierung von Lasten für Berechnung und Versuch. In: DVM-Weiterbildungsseminar Teil 1—Von der Betriebsmessung zur Lastannahme, Osnabrück (2002)

    Google Scholar 

  2. Schijve, J.: Fatigue of Structures and Materials. Kluwer Academic Publisher, Dordrecht (2001)

    MATH  Google Scholar 

  3. Heuler, P.: Experimentelle und numerische Ansätze für den Lebensdauernachweis von Kraftfahrzeugstrukturen. In: DVM-Bericht 239: Bruchmechanik und Bauteilsicherheit, S. 7–22. DVM, Berlin (2007)

    Google Scholar 

  4. Haibach, E.: Betriebsfestigkeit – Verfahren und Daten zur Bauteilberechnung. Springer, Berlin (2002)

    Google Scholar 

  5. Heuler, P., Klätschke, H.: Generation and use of standardised load spectra and load-time histories. Int. J. Fatigue 27, 974–990 (2005)

    Article  MATH  Google Scholar 

  6. Johannesson, P.: Extrapolation of rainflow matrices. Fatigue Fract. Eng. Mater. Struct. 29, 201–207 (2005)

    Google Scholar 

  7. Buxbaum, O.: Betriebsfestigkeit. Sichere und wirtschaftliche Bemessung schwingbruchgefährdeter Bauteile. Verlag Stahleisen, Düsseldorf (1992)

    Google Scholar 

  8. Dreßler, K., Gründer, B., Hack, M., Köttgen, V.B.: Extrapolation of rainflow matrices. In: SAE Technical Paper 960569, 1996

    Google Scholar 

  9. Johannesson, P., Thomas, J.-J.: Extrapolation of rainflow matrices. Extremes 4, 241–262 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. ASTM: Annual Book of ASTM Standards 1997. Section 3: Metals Test Methods and Analytical Procedures, Volume 03.01, Metals—Mechanical Testing; Elevated and Low-Temperature Tests; Metallography

    Google Scholar 

  11. Westermann-Friedrich, A., Zenner, H.: Zählverfahren zur Bildung von Kollektiven aus Zeitfunktionen – Vergleich der verschiedenen Verfahren und Beispiele. FVA-Merkblatt, Forschungsvereinigung Antriebstechnik. Frankfurt (1999)

    Google Scholar 

  12. Amzallag, C., Gerey, J.P., Robert, J.L., Bahuaud, J.: Standardization of the rainflow counting method for fatigue analysis. Int. J. Fatigue 16, 287–293 (1994)

    Article  Google Scholar 

  13. Anthes, R.J.: Modified rainflow counting keeping the load sequence. Int. J. Fatigue 19, 529–536 (1997)

    Article  Google Scholar 

  14. ten Have, A.A.: European approaches in standard spectrum development. In: Potter, J.M., Watanabe, R.T. (eds.): Development of Fatigue Loading Spectra. ASTM STP 1006, S. 17–35 (1989)

    Google Scholar 

  15. Berger, C., Eulitz, K.-G., Heuler, P., Kotte, K.-L., Naundorf, H., Schütz, W., Sonsino, C.M., Wimmer, A., Zenner, H.: Betriebsfestigkeit in Germany—an overview. Int. J. Fatigue 24, 603–625 (2002)

    Article  Google Scholar 

  16. Bernard, P.J., Lindley, T.C., Richards, C.E.: Mechanisms of overload retardation during fatigue crack propagation. In: Wie, R.P., Stephens, R.I. (eds.): Fatigue crack growth under spectrum loads. ASTM STP 595, S. 78–97 (1976)

    Google Scholar 

  17. Sander, M.: Einfluss variabler Belastung auf das Ermüdungsrisswachstum in Bauteilen und Strukturen. Fortschritt-Berichte VDI, Reihe 18, Nr. 287, VDI Verlag, Düsseldorf (2003)

    Google Scholar 

  18. Sander, M., Richard, H.A.: Fatigue crack growth under variable amplitude loading - part I: experimental investigations. Fatigue Fract. Eng. Mater. Struct. 29, 291–302 (2006)

    Article  Google Scholar 

  19. Ward-Close, C.M., Ritchie, R.O: On the role of crack closure mechanisms in influencing fatigue crack growth following tensile overloads in a titanium alloy: near threshold versus high ΔK behaviour. In: Newman, J.C. Jr. (ed.): Mechanics of Fatigue Crack Closure. ASTM STP 982, S. 93–111 (1988)

    Google Scholar 

  20. Petit, J., Tintillier, R., Ranganathan, N., Ait Abdeaim, M., Chalant, G.: Influence of the microstructure and environment on fatigue crack propagation affected by single or repeated overloads in a 7075 alloy. In: Petit, J., Davidson, D.L., Surresh, S., Rabbe, P. (eds.): Fatigue Crack Growth Under Variable Amplitude Loading, S. 162–179. Elsevier Applied Science, London (1988)

    Google Scholar 

  21. Skorupa, M.: Empirical trends and prediction models for fatigue crack growth under variable amplitude loading. ECN-R-96-07, Netherlands Energy Research Foundation, Petten (1996)

    Google Scholar 

  22. Schijve, J.: Fatigue crack growth under variable-amplitude loading. In: ASM Handbook. Fatigue and Fracture, vol. 19, S. 110–133 (1997)

    Google Scholar 

  23. Barsom, J.M.: Fatigue Crack Growth Under Variable-Amplitude Loading in ASTM A514 Grade B Steel. In: Wie, R.P., Stephens, R.I. (eds.): Fatigue crack growth under spectrum loads, ASTM STP 595, Philadelphia, 1976, S. 217–235

    Google Scholar 

  24. Hudson, C.M.: A Root-Mean-Square Approach for Predicting Fatigue Crack Growth under Random Loading. In: Chang, J.B., Hudson, C.M. (eds.): Methods and Models for Predicting Fatigue Crack Growth under Random Loading. ASTM STP 748, Philadelphia, 1981, S. 41–52

    Google Scholar 

  25. Bignonnet, A., Sixou, Y., Verstavel, J.-M.: Equivalent loading approach to predict fatigue crack growth under random loading. In: Petit, J., Davidson, D.L., Surresh, S., Rabbe, P. (eds.) Fatigue crack growth under variable amplitude loading, pp. 372–383. Elsevier Applied Science, London (1988)

    Google Scholar 

  26. Kam, J., Dover, W.: Fatigue crack growth in offshore welded tubular joints under real live variable amplitude loading. In: Petit, J., Davidson, D.L., Surresh, S., Rabbe, P. (eds.) Fatigue crack growth under variable amplitude loading, pp. 384–400. Elsevier Applied Science, London (1988)

    Google Scholar 

  27. Dominguez, J.: Fatigue crack growth under variable amplitude loading. In: Carpinteri, A. (ed.) Handbook of Fatigue Crack Propagation in Metallic Structures, pp. 955–997. Elsevier Science, Amsterdam (1994)

    Chapter  Google Scholar 

  28. de Koning, A.U.: A simple crack closure model for prediction of fatigue crack growth rates under variable-amplitude loading. In: Roberts, R. (ed.): Fracture Mechanics, ASTM STP 743, ASTM, 1981, S. 63–85

    Google Scholar 

  29. Padmadinata, U.H.: Investigation of crack-closure prediction models for fatigue in aluminium alloy sheet under flight-simulation loading. Dissertation, Technische Universität Delft (1990)

    Google Scholar 

  30. Hahn, H.G.: Bruchmechanik: Einführung in die theoretischen Grundlagen. Teubner-Studienbücher, Mechanik, Stuttgart (1976)

    Google Scholar 

  31. Gray, T.D., Gallagher, J.P.: Predicting fatigue crack retardation following a single overload using a modified wheeler model. In: Rice, J.R., Paris, P.C. (eds.): Mechanics of Crack Growth, ASTM STP 590, ASTM, Philadelphia, 1976, S. 331–344

    Google Scholar 

  32. NASA: Fatigue Crack Growth Computer Program “NASGRO” Version 3.0 – Reference Manual, JSC-22267B, NASA, Lyndon B. Johnson Space Centre, Texas, 2000

    Google Scholar 

  33. Xiaoping, H., Moan, T., Weicheng, C.: An engineering model of fatigue crack growth under variable amplitude loading. Int. J. Fatigue 30, 2–10 (2008)

    Article  Google Scholar 

  34. Aliaga, D., Davy, S., Schaff, H.: A simple crack closure model for predicting fatigue crack growth under flight simulation loading. In: Newman, Jr., J.C., Elber, W. (eds.): Mechanics of Fatigue Crack Closure. ASTM STP 982, Philadelphia, 1987, S. 491–504

    Google Scholar 

  35. Baudin, G., Labourdette, R., Robert, M.: Prediction of crack growth under spectrum loadings with ONERA model. In: Petit, J., Davidson, D.L., Surresh, S., Rabbe, P. (eds.) Fatigue crack growth under variable amplitude loading, pp. 292–308. Elsevier Applied Science, London (1988)

    Google Scholar 

  36. Newman, Jr., J.C.: A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading. In: Chang, J.B., Hudson, C.M. (eds.): Methods and Models for Predicting Fatigue Crack Growth under Random Loading. ASTM STP 748, Philadelphia, 1981, S. 53–84

    Google Scholar 

  37. de Koning, A.U., van der Linden, H.H.: Prediction of Fatigue Crack Growth Rates Under Variable Loading Using a Simple Crack Closure Model. NLR MP 81023U, National Aerospace Laboratory, NLR, Amsterdam (1981)

    Google Scholar 

  38. Beretta, S., Carboni, M.: A Strip-Yield algorithm for the analysis of closure evaluation near the crack tip. Eng. Fract. Mech. 72, 1222–1237 (2005)

    Article  Google Scholar 

  39. Kim, J.H., Lee, S.B.: Prediction of crack opening stress for part-through cracks and its verification using a modified strip-yield model. Eng. Fract. Mech. 66, 1–14 (2000)

    Article  Google Scholar 

  40. Wang, G.S., Blom, A.F.: A strip model for fatigue crack growth predictions under general load conditions. Eng. Fract. Mech. 40, 507–533 (1991)

    Article  Google Scholar 

  41. Richard, H.A., Linnig, W., Henn, K.: Fatigue crack propagation under combined loading. Forensic Eng 3, 99–109 (1991)

    Google Scholar 

  42. Sander, M., Richard, H.A.: Effects of block loading and mixed mode loading on the fatigue cack growth. In: Blom, A.F. (ed.): Fatigue 2002. Proceedings of the 8th International Fatigue Congress, Stockholm, 2002, S. 2895–2902

    Google Scholar 

  43. Richard, H.A.: Specimen for investigating biaxial fracture and fatigue process. In: Brown, M.W., Miller, K.J. (eds.) Biaxial and Multiaxial Fatigue, EGF 3, pp. 217–229. Mechanical Engineering Publications, London (1989)

    Google Scholar 

  44. Sander, M.: Sicherheit und Betriebsfestigkeit von Maschinen und Anlagen. Springer, Berlin (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Albert Richard .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Richard, H.A., Sander, M. (2016). Fatigue Crack Growth Under Service Loads. In: Fatigue Crack Growth. Solid Mechanics and Its Applications, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-32534-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32534-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32532-3

  • Online ISBN: 978-3-319-32534-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics