Skip to main content

Analysis of the PGPB Potential of Bacterial Endophytes Associated with Maize

  • Conference paper
  • First Online:
Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction

Abstract

Bacterial endophytes live inside plants for at least part of their life cycle, because plants are very attractive as nutrient reservoirs for such bacteria. Plants need the presence of those associated bacteria for their growth and adaptation to different ecosystems. This is the case of maize, which is a well-known cereal crop for hosting a great diversity of endophytic bacteria. Thus, microbes take advantage of the plant nutrients, whereas plants receive benefits from associated bacteria, such as nitrogen and phosphorous uptake. To study bacterial diversity, we isolated the endophytic bacteria from stalk and root of maize plants ( Zea mays) growing in a soil of Ciudad Rodrigo (NW Spain). Bacterial isolates were analyzed by RAPD fingerprinting, allowing the differentiation among strains of the same species. Our results showed the high diversity of isolates inside maize rhizosphere and endosphere, establishing many different RAPD types. However, despite the usefulness of RAPD profiles in bacterial diversity analysis, 16S rRNA gene sequencing was carried out and subsequently analyzed. A total of 25 different genera were isolated. Moreover, we determined the ability of these strains to promote plant growth, performing in vitro PGPB mechanism analysis: (i) phosphate solubilization, (ii) siderophores production, and (iii) IAA and/or precursors biosynthesis. Here, we report the infraspecific diversity of bacterial endophytes isolated from Z. mays, which is higher than we expected. Moreover, the analysis of in vitro PGPB mechanisms indicates that these strains can promote plant development, suggesting their possible application in biofertilization schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander DB, Zuberer DA (1991) Use of Chrome Azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Apine OA, Jadhav JP (2011) Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J Appl Microbiol 110(5):1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Hussain A, Javed M et al (1993) Effect of soil applied L-methionine on growth, nodulation and chemical composition of Albizia lebbeck L. Plant Soil 148(1):129–135

    Article  CAS  Google Scholar 

  • Banerjee A, Duflo E, Glennerster R et al (2010) The miracle of microfinance? Evidence from a randomized evaluation. Bread Working Paper, 278

    Google Scholar 

  • Battin TJ, Sloan WT, Kjelleberg S et al (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5(1):76–81

    Article  CAS  PubMed  Google Scholar 

  • Behrendt U, Schumann P, Ulrich A (2008) Agrococcus versicolor sp. nov., an actinobacterium associated with the phyllosphere of potato plants. Int J Syst Evol Micr 58:2833–2838

    Article  CAS  Google Scholar 

  • Bulgari D, Casati P, Crepaldi P et al (2011) Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. App Environ Microbiol 77(14):5018–5022

    Article  CAS  Google Scholar 

  • Carrillo-Castañeda G, Munoz JJ, Peralta-Videa JR et al (2002) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814

    Article  Google Scholar 

  • Chelius MK, Triplett EW (2000) Diazotrophic endophytes associated with maize. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process, 1st edn. Horizon Scientific Press, Wymondham, UK, pp 779–791

    Google Scholar 

  • Chun J, Lee JH, Jung Y et al (2007) EzTaxon: a webbased tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Reiter B, Sessitsch A et al. (2004) Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microb 71(4):1685–1693

    Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  • Conn VM, Franco CM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70(3):1787–1794

    Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp. NII-0909 and its interaction with cowpea. Plant Physiol Bioch 48:987–992

    Article  CAS  Google Scholar 

  • Duca D, Lorv J, Patten CL et al (2014) Indole-3-acetic acid in plant-microbe interactions. A Van Leeuw J Microb 106(1):85–125

    Article  CAS  Google Scholar 

  • Flores‐Félix JD, Menéndez E, Rivera LP et al. (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sc176(6):876–882

    Google Scholar 

  • García-Fraile P, Carro L, Robledo M et al (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 7(5):e38122

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205

    Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M et al (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microb 70:2667–2677

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes, 1st edn. Marcel Dekker Inc., New York, pp 199–233

    Google Scholar 

  • Li TY, Zeng HL, Ping Y, Lin H, Fan XL, Guo ZG, Zhang CF (2007) Construction of a stable expression vector for Leifsonia xyli subsp. cynodontis and its application in studying the effect of the bacterium as an endophytic bacterium in rice. FEMS Microbiol Lett 267(2):176–183

    Google Scholar 

  • Luo S, Wan Y, Xiao X et al (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644

    Article  CAS  PubMed  Google Scholar 

  • MAGRAMA (2013) Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España, Madrid, España

    Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23(2):109–117

    Article  PubMed  Google Scholar 

  • Morrisey F, Dugan P, Koths JS (1975) Chitinase production by Arthrobacter sp. Lysing cells of Fusarium rosetum. Soil Biol Biochem 8:23–28

    Article  Google Scholar 

  • O’Hara GW, Goss TJ, Dilworth MJ et al (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55(8):1870–1876

    PubMed  PubMed Central  Google Scholar 

  • Peix A, Rivas R, Santa-Regina I et al (2004) Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Micr 54:847–850

    Article  CAS  Google Scholar 

  • Pereira SIA, Castro PML (2014) Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ Sci Pollut R 21(24):14110–14123

    Article  CAS  Google Scholar 

  • Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium—a potential tool for sustainable soil health. J Biofertil Biopest 3:1–9

    Google Scholar 

  • Rajkumar M, Prasad MNV, Freitas H (2010) Potential of siderophore producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Velázquez E, Valverde A et al (2001) A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Velázquez E, Palomo JL et al (2002) Rapid identification of Clavibacter michiganensis subspecies sepedonicus using two primers random amplified polymorphic DNA (TP-RAPD) fingerprints. Eur J Plant pathology 108(2):179–184

    Article  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19(8):827–837

    Article  CAS  PubMed  Google Scholar 

  • Ruiz E, Rodríguez L, Alonso-Azcaráte J et al (2009) Phytoextraction of metal polluted soils around a Pb–Zn mine by crop plants. Inter J Phytorem 4:360–384

    Article  Google Scholar 

  • Salisbury JL, Baron A, Surek B et al (1984) Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle. J Cell Biol 99(3):962–970

    Article  CAS  PubMed  Google Scholar 

  • Salgado-Salazar C,  Cepero D (2005) Endophytic fungi in rose (Rosa hybrida) in Bogota, Colombia. Rev Iberoam Micol 22(2):99–101

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Annal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Sun L, Qiu F, Zhang X et al (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  CAS  PubMed  Google Scholar 

  • Sun LN, Zhang YF, He LY et al (2010) Genetic diversity and characterization of heavy metalresistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technol 101:501–509

    Article  CAS  Google Scholar 

  • Sun H, He Y, Xiao Q et al (2013) Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. Afr J Microbiol Res 7(16):1496–1504

    CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Fisiologia vegetal. Universitat Jaume I

    Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ et al (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22(3):120–126

    Article  PubMed  Google Scholar 

  • Vandeputte O, Öden S, Mol A et al (2005) Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl Environ Microbiol 71:1169–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velázquez E, Rodriguez-Barrueco C (eds) (2007) First international meeting on microbial phosphate solubilization, vol 102. Springer Science and Business Media

    Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  CAS  PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Scientific Publications, Oxford, England

    Google Scholar 

  • Whiting NS, de Souza PM, Terry N (2001) Rhizosphere bacteriamobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2010) Phytoremediation potential of (Zea mays L.). A review. Afr J Gen Agric 6:275–287

    Google Scholar 

Download references

Acknowledgements

This work was supported by Junta de Castilla y Leon, Spain (JCyL SA169 U 14 project)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Menéndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Celador-Lera, L., Menéndez, E., Flores-Félix, J.D., Mateos, P.F., Rivas, R. (2016). Analysis of the PGPB Potential of Bacterial Endophytes Associated with Maize. In: González-Andrés, F., James, E. (eds) Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction. Springer, Cham. https://doi.org/10.1007/978-3-319-32528-6_3

Download citation

Publish with us

Policies and ethics