Skip to main content

Biocontrol of Fusarium oxysporum f.sp. phaseoli and Phytophthora capsici with Autochthonous Endophytes in Common Bean and Pepper in Castilla y León (Spain)

  • Conference paper
  • First Online:
Book cover Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction

Abstract

Fusarium oxysporum f.sp. phaseoli and Phytophthora capsici are soil pathogens which cause diseases to common bean (Phaseolus vulgaris) and pepper ( Capsicum annuum) , respectively. Some microorganisms associated with plants show different biocontrol mechanisms against pathogens. The agricultural use of these mechanisms is a chief strategy as an alternative to chemicals. In a previous work, we isolated and taxonomically identified 68 endophytic bacteria from common bean and 54 from pepper. The isolations were carried out in farms located in regions protected by a PGI: “Alubia de La Bañeza—León” in the case of common bean, and “Pimiento de Fresno-Benavente” in the case of pepper. The aim of the present work was the evaluation of such bacteria and AM fungus, as potential biocontrollers of F. oxysporum f.sp. phaseoli and P. capsici. In total 18 out of the 122 isolates controlled in vitro the growth either of F. oxysporum or P. capsici, or both pathogens. Such controller bacteria were tested in the plants in which they were isolated (common bean or pepper), which were grown in hydroponic conditions and inoculated with F. oxysporum f.sp. phaseoli and P. capsici, respectively. Two isolates belonging to the species Pseudomonas brassicacearum and Bacillus siamensis , respectively, were the best controllers of Fusarium root rot in common bean. Moreover, two isolates belonging to Bacillus pumilus were the best controllers of P. capsici in pepper plants . In trials carried out in microcosm conditions, common bean plants inoculated with the pathogen F. oxysporum, plus an autochthonous Rhizobium leguminosarum strain and the B. siamensis isolate, showed a very weak pathogen attack. Regarding the pepper microcosm assay, the co-inoculation with one of the B. pumilus isolates plus an autochthonous mycorrhiza controlled P. capsici in the plants inoculated with the pathogen, even at the same level than the chemical fungicide. This opens the door for the development of biocontrollers, alternative to chemicals, in these two crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akköprü A, Demir S (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153(9):544–550

    Article  Google Scholar 

  • Aprile MC, Caputo V, Nayga RM Jr (2012) Consumers’ valuation of food quality labels: the case of the European geographic indication and organic farming labels. Int J Consum Stud 36(2):158–165

    Article  Google Scholar 

  • Arora N, Kang S, Maheshwari D (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81(6):673–677

    Google Scholar 

  • Azcón-Aguilar C, Jaizme-Vega M, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: from genes to bioproducts. Birkhaüser Verlag, Basel, Switzerland

    Google Scholar 

  • Bardin SD, Huang H, Pinto J, Amundsen EJ, Erickson RS (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Can J Bot 82(3):291–296

    Article  Google Scholar 

  • Barquero M (2014) Caracterización y selección de bacterias y hongos micorrícicos aislados en raíces de alubia y pimiento, en la provincia de León, para el desarrollo de biofertilizantes. Universidad de Salamanca (Unpublished PhD. Thesis)

    Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Calvet C, Pinochet J, Hernández-Dorrego A, Estaún V, Camprubí A (2001) Field microplot performance of the peach-almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes. Mycorrhiza 10(6):295–300

    Article  Google Scholar 

  • Chakraborty U, Chakraborty B (1989) Interaction of Rhizobium leguminosarum and Fusarium solani f. sp. pisi on pea affecting disease development and phytoalexin production. Can J Bot 67(6):1698–1701

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordier C, Pozo M, Barea J, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11(10):1017–1028

    Article  CAS  Google Scholar 

  • Dar GH, Zargar M, Beigh G (1997) Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L.) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb Ecol 34(1):74–80

    Article  Google Scholar 

  • Dutta S, Mishra A, Dileep Kumar B (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40(2):452–461

    Article  CAS  Google Scholar 

  • Ehteshamul-Haque S, Ghaffar A (1993) Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. J Phytopathol 138(2):157–163

    Article  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20(8):338–343

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Article  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41(1):117–153

    Article  CAS  PubMed  Google Scholar 

  • Jeong H, Jeong DE, Kim SH, Song GC, Park SY, Ryu CM, Choi SK (2012) Draft genome sequence of the plant growth-promoting bacterium Bacillus siamensis KCTC 13613T. J Bacteriol 194(15):4148–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Sang MK, Jeun Y, Hwang BK, Kim KD (2008) Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper. Crop Prot 27(3):436–443

    Article  Google Scholar 

  • Kingkun D, Taeyangkun H, Hongsanho J (1989) Expression of age-related resistance in pepper plants infected with Phytophthora capsici. Plant Dis 73:745–747

    Article  Google Scholar 

  • Larsen J, Graham JH, Cubero J, Ravnskov S (2012) Biocontrol traits of plant growth suppressive arbuscular mycorrhizal fungi against root rot in tomato caused by Pythium aphanidermatum. Eur J Plant Pathol 133(2):361–369

    Article  Google Scholar 

  • Levenfors JP, Eberhard TH, Levenfors JJ, Gerhardson B, Hökeberg M (2008) Biological control of snow mould (Microdochium nivale) in winter cereals by Pseudomonas brassicacearum, MA250. Biocontrol 53(4):651–665

    Article  Google Scholar 

  • Lugtenberg BJJ, Malfanova N, Kamilova F, Berg G (2013) Microbial control of plant root diseases. In: de Bruijn, FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, London

    Google Scholar 

  • Mulas D, García-Fraile P, Carro L, Ramírez-Bahena M, Casquero P, Velázquez E, González-Andrés F (2011) Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in northern Spanish soils: selection of native strains that replace conventional N fertilization. Soil Biol Biochem 43(11):2283–2293

    Article  CAS  Google Scholar 

  • Nogales A, Aguirreolea J, Santa María E, Camprubí A, Calvet C (2009) Response of mycorrhizal grapevine to Armillaria mellea inoculation: disease development and polyamines. Plant Soil 317(1–2):177–187

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Ortet P, Barakat M, Lalaouna D, Fochesato S, Barbe V, Vacherie B, Achouak W (2011) Complete genome sequence of a beneficial plant root-associated bacterium, Pseudomonas brassicacearum. J Bacteriol 193(12):3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor Corrales MA (1987) Reactions of selected bean germplasms to infection by Fusarium oxysporum f. sp. phaseoli. Plant Dis 71:990–993

    Article  Google Scholar 

  • Pérez-García A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22(2):187–193

    Article  PubMed  Google Scholar 

  • Recep K, Fikrettin S, Erkol D, Cafer E (2009) Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol Control 50(2):194–198

    Article  Google Scholar 

  • Rigaud J, Puppo A (1975) Indole-3-acetic acid catabolism by soybean bacterioids. J Gen Microbiol 88:223–228

    Article  Google Scholar 

  • Roslycky E (1967) Bacteriocin production in the rhizobia bacteria. Can J Microbiol 13(4):431–432

    Article  CAS  PubMed  Google Scholar 

  • Ross IL, Alami Y, Harvey PR, Achouak W, Ryder MH (2000) Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Appl Environ Microbiol 66(4):1609–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena K, Raguchander T, Samiyappan R (2009) Fluorescent Pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Biocontrol 54(2):273–286

    Article  Google Scholar 

  • Sayeed Akhtar M, Siddiqui ZA (2008) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot 27(3–5):410–417

    Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89(6):515–521

    Article  CAS  PubMed  Google Scholar 

  • Vigo C, Norman J, Hooker J (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49(4):509–514

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Botany 52(Spec Issue):487–511

    Google Scholar 

  • Yao M, Tweddell R, Desilets H (2002) Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12(5):235–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the research project LE029A10-2 (Junta de Castilla y León, Spain). The Spanish Ministry of Foreign Affairs and Cooperation (MAEC) granted M. Barquero

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando González-Andrés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Barquero, M., Terrón, A., Velázquez, E., González-Andrés, F. (2016). Biocontrol of Fusarium oxysporum f.sp. phaseoli and Phytophthora capsici with Autochthonous Endophytes in Common Bean and Pepper in Castilla y León (Spain). In: González-Andrés, F., James, E. (eds) Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction. Springer, Cham. https://doi.org/10.1007/978-3-319-32528-6_19

Download citation

Publish with us

Policies and ethics