Skip to main content

Improving Legume–Rhizobium Symbiosis for Copper Phytostabilization Through Genetic Manipulation of Both Symbionts

  • Conference paper
  • First Online:

Abstract

The presence of excess copper (Cu) in soils represents an environmental and health problem, due to the risk of groundwater pollution. Besides, it affects plant development and yield . Phytoremediation has consolidated as a low-cost and ecological technique for metal remediation. In this particular, legume–rhizobium symbioses have risen as an attractive biotechnological tool for metal phytostabilization. For this technique to be suitable, metal-tolerant symbionts are needed, which can be generated through genetic engineering. In this work, the genetic manipulation of both symbiotic partners for Cu phytostabilization was described. Concerning the plant, composite Medicago truncatula plants expressing the metallothionein gene mt4a from Arabidopsis thaliana in roots were generated, in an attempt to increase the plant tolerance towards Cu. Concerning the rhizobial strain, an Ensifer medicae strain was genetically engineered by expressing the copper resistance genes copAB from Pseudomonas fluorescens. Our results indicate the following: (a) the expression of mt4a in composite plants increases tolerance towards Cu and reduces oxidative stress caused by this pollutant. Lower levels of reactive oxygen species (ROS)-scavenging enzymes were found in mt4a-expressing plants; (b) the expression of mt4a in composite plants improves nodulation, whereas inoculation with the genetically modified Ensifer has a synergistic effect; and (c) The double symbiotic system enhances Cu accumulation in roots, without increasing metal translocation to shoots. We conclude that the genetically modified symbiosis is a suitable tool for Cu rhizo–phytostabilization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad E, Zaidi A, Khan MS, Oves M ( 2012) Heavy metal toxicity to symbiotic nitrogen fixing microorganisms and host legumes. In: Zaidi A et al (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna, pp 29–44

    Google Scholar 

  • Boisson-Dernier A, Chabaud M, García F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14(6):695–700

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cambrollé J, Redondo-Gómez S, Mateos Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042

    Article  PubMed  Google Scholar 

  • Cobbet C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant growth promoting rhizobacteria. J Hazard Mater 177(1):323–330

    Article  CAS  PubMed  Google Scholar 

  • Delgadillo J, Lafuente A, Doukkali B, Redondo-Gómez S, Mateos-Naranjo E, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2015) Improving legume nodulation and Cu rhizostabilization using a genetically modified rhizobia. Environ Technol 36:1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:877–883

    Article  Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao X, Xie P, Zhu YG, Taghavi S, Wei G. Rensing C (2015) Copper tolerance mechanisms of Mesorhizobium amorphae and its role in aiding phytostabilization by Robinia pseudoacacia in copper contaminated soil. Environ Sci Technol 49:2328– 2340

    Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins—metal chelators with ROS scavenging activity? Plant Biol 13:225–232

    Article  CAS  PubMed  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66(9):1670–1676

    Article  CAS  PubMed  Google Scholar 

  • Kopittke P, Dart PJ, Menzie NW (2007) Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata). Environ Pollut 145:309–315

    Article  CAS  PubMed  Google Scholar 

  • Kotrba P, Mackova M, Macek T (2011) Transgenic approaches to enhance phytoremediation of heavy metal polluted soils. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal contaminated soils. Environmental pollution, vol 20. Springer, Berlin, pp 239–271

    Google Scholar 

  • Li Z, Ma Z, Hao X, Rensing C, Wei G (2014) Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil. Appl Environ Microbiol 80(6):1961–1971

    Article  PubMed  PubMed Central  Google Scholar 

  • Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    Article  CAS  PubMed  Google Scholar 

  • Méndez MO, Maier RM (2008) Phytostabilisation of mine tailings in arid and semiarid environments: an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Pajuelo E, Carrasco JA, Romero LC, Chamber MA, Gotor C (2007) Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol) lyase under metal stress. Plant Biol 9:672–681

    Article  CAS  PubMed  Google Scholar 

  • Pajuelo E, Rodríguez-LLorente ID, Lafuente A, Caviedes MA (2011) Legume-rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal contaminated soils, environmental pollution, vol 20. Springer, Germany, pp 95–123

    Chapter  Google Scholar 

  • Panda SK (2008) Impact of copper on reactive oxygen species, lipid peroxidation and antioxidants in Lemna minor. Biol Plant 52:561–564

    Article  CAS  Google Scholar 

  • Posmyk MM, Kontek R, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72:596–602

    Article  CAS  PubMed  Google Scholar 

  • Rifat H, Safdar A, Ummay A, Rabia K, Iftikhar A (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Google Scholar 

  • Rodríguez-Llorente ID, Perez-Palacios P, Doukkali B, Caviedes MA, Pajuelo E (2010) Expression of the seed-specific metallothionein mt4a in plant vegetative tissues increases Cu and Zn tolerance. Plant Sci 178:327–332

    Article  Google Scholar 

  • Shrivastava AK (2009) A review on copper pollution and its removal from water bodies by pollution control technologies. Ind J Environ Protect 29:552–560

    CAS  Google Scholar 

  • Sosa-Alderete LG, Agostini E, Medina MI (2009) Antioxidant response of tobacco (Nicotiana tabacum) hairy roots after phenol treatment. Plant Physiol Biochem 49:1020–1028

    Article  Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99(3):279–293

    Article  CAS  PubMed  Google Scholar 

  • Teng Y, Wang X, Li L, Li Z, Luo Y (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi BN, Mehta S, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere 62:538–544

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Wang SH, Zhang H, Zhang Q, Jin GM, Jiang SJ, Jiang D, He QY, Li ZP (2011) Copper-induced oxidative stress and responses of the antioxidant system in roots of Medicago sativa. J Agron Crop Sci 197:418–429

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17(1):145–156

    Article  CAS  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2007) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research financed by MINECO (Spain) and FEDER (project reference BIO-2009-7766). P.P.P. acknowledges grants from University of Seville (Spain) and AUIP. J.D. acknowledges a grant from CONACYT (Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Caviedes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pajuelo, E. et al. (2016). Improving Legume–Rhizobium Symbiosis for Copper Phytostabilization Through Genetic Manipulation of Both Symbionts. In: González-Andrés, F., James, E. (eds) Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction. Springer, Cham. https://doi.org/10.1007/978-3-319-32528-6_16

Download citation

Publish with us

Policies and ethics