Skip to main content

Electrical Properties of the Si–Al\(_{2}\)O\(_{3}\) Interface

  • Chapter
  • First Online:
New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The effectiveness of silicon surface passivation by \(\mathrm{Al}_{2}\mathrm{O}_{3}\) is fundamentally determined by the properties of the various electronic states present at the Si–Al\(_{2}\)O\(_{3}\) interface.

Unity of plan everywhere lies hidden under the mask: of diversity of structure—the complex is everywhere evolved out of the simple.

—Thomas Henry Huxley

A Lobster; or, the Study of Zoology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This remains so despite the likely presence of a thin SiO\(_{\mathrm{x}}\) interlayer at the Si–Al\(_{2}\)O\(_{3}\) interface (see Sects. 1.2 and 9.1.3), as demonstrated in Chap. 8.

  2. 2.

    Note that Tanaka and Iwauchi [36] used the tunnelling model of [37] to account for frequency dispersion, rather than the surface potential fluctuation model of [25] used here and in most recent works, resulting in a systematically larger value for \(\sigma _{n}\). The value of \(\sigma _{n}\) corresponding to the measurements of [36] is reassessed in Fig. 4.7.

  3. 3.

    Each of the preceding authors used different values of \(v_{\textit{th}}\) in extracting \(\sigma _{\!p}\) and \(\sigma _{n}\), either \(2 \times 10^{7}\,\mathrm{cm}\,\mathrm{s}^{-1}\) [36], \(5 \times 10^{7}\,\mathrm{cm}\,\mathrm{s}^{-1}\) [38], or \(1 \times 10^{7}\,\mathrm{cm}\,\mathrm{s}^{-1}\) [32]. The values mentioned in the text have been normalised to \(v_{\textit{th}} = 2 \times 10^{7}\,\mathrm{cm}\,\mathrm{s}^{-1}\).

References

  1. Poindexter, E.H.: MOS interface states: overview and physicochemical perspective. Semicond. Sci. Technol. 4, 961–969 (1989)

    Article  Google Scholar 

  2. Flietner, H., Füssel, W., Sinh, N.D., Angermann, H.: Density of states and relaxation spectra of etched, H-terminated and naturally oxidized si-surfaces and the accompanied defects. Appl. Surf. Sci. 104(105), 342–348 (1996)

    Article  Google Scholar 

  3. Hattori, T., Iwauchi, S., Nagano, K., Tanaka, T.: Effect of heat treatment on the interface characteristics in reactively sputtered Al\(_2\)O\(_3\)-Si structures. Jpn. J. Appl. Phys. 10, 203–207 (1971)

    Article  Google Scholar 

  4. Aguilar-Frutis, M., Garcia, M., Falcony, C.: Optical and electrical properties of aluminum oxide films deposited by spray pyrolysis. Appl. Phys. Lett. 72, 1700–1702 (1998)

    Article  Google Scholar 

  5. Aguilar-Frutis, M., Garcia, M., Falcony, C., Plesch, G., Jimenez-Sandoval, S.: A study of the dielectric characteristics of aluminum oxide thin films deposited by spray pyrolysis from Al(acac)\(_3\). Thin Solid Films 389, 200–206 (2001)

    Article  Google Scholar 

  6. Park, D.-G., Cho, H.-J., Lim, K.-Y., Lim, C., Yeo, I.-S., Roh, J.-S., Park, J.W.: Characteristics of \(n^+\) polycrystalline-Si/Al\(_2\)O\(_3\)/Si metal-oxide-semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH\(_3\))\(_3\) and H\(_2\)O vapor. J. Appl. Phys. 89, 6275–6280 (2001)

    Article  Google Scholar 

  7. Carmona-Tellez, S., Guzman-Mendoza, J., Aguilar-Frutis, M., Alarcon-Flores, G., Garcia-Hipolito, M., Canseco, M.A., Falcony, C.: Electrical, optical, and structural characteristics of Al\(_2\)O\(_3\) thin films prepared by pulsed ultrasonic sprayed pyrolysis. J. Appl. Phys. 103, 034105 (2008)

    Article  Google Scholar 

  8. Werner, F., Veith, B., Zielke, D., Kühnemund, L., Tegenkamp, C., Seibt, M., Brendel, R., Schmidt, J.: Electronic and chemical properties of the c-Si/Al\(_2\)O\(_3\) interface. J. Appl. Phys. 109, 113701 (2011)

    Article  Google Scholar 

  9. Werner, F., Stals, W., Görtzen, R., Veith, B., Brendel, R., Schmidt, J.: High-rate atomic layer deposition of Al\(_2\)O\(_3\) for the surface passivation of Si solar cells. Energy Procedia 8, 301–306 (2011)

    Article  Google Scholar 

  10. Laades, A., Sperlich, H.-P., Bähr, M., Stürzebecher, U., Diaz Alvarez, C.A., Burkhardt, M., Angermann, H., Blech, M., Lawerenz, A.: On the impact of interfacial SiO\(_x\)-layer on the passivation properties of PECVD synthesized aluminum oxide. Phys. Status Solidi C 9, 2120–2123 (2012)

    Article  Google Scholar 

  11. Schuldis, D., Richter, A., Benick, J., Hermle, M.: Influence of different post deposition treatments on the passivation quality and interface properties of thermal ALD Al\(_2\)O\(_3\) capped by PECVD SiN\(_x\). In: Proceedings of 27th European Photovoltaic Solar Energy Conference, pp. 1933–1937 (2012)

    Google Scholar 

  12. Veith, B., Dullweber, T., Siebert, M., Kranz, C., Werner, F., Harder, N.-P., Schmidt, J., Roos, B.F.P., Dippell, T., Brendel, R.: Comparison of ICP-AlO\(_x\) and ALD-Al\(_2\)O\(_3\) layers for the rear surface passivation of c-Si solar cells. Energy Procedia 27, 379–384 (2012)

    Article  Google Scholar 

  13. Kersten, F., Schmid, A., Bordihn, S., Müller, J.W., Heitmann, J.: Role of annealing conditions on surface passivation properties of ALD Al\(_2\)O\(_3\) films. Energy Procedia 38, 843–848 (2013)

    Article  Google Scholar 

  14. Liang, W., Weber, K.J., Suh, D., Phang, S.P., Yu, J., McAuley, A.K., Legg, B.R.: Surface passivation of boron-diffused p-type silicon surfaces with (100) and (111) orientations by ALD Al\(_2\)O\(_3\) layers. IEEE J. Photovolt. 3, 678–683 (2013)

    Article  Google Scholar 

  15. Liao, B., Stangl, R., Mueller, T., Lin, F., Bhatia, C.S., Hoex, B.: The effect of light soaking on crystalline silicon surface passivation by atomic layer deposited Al\(_2\)O\(_3\). J. Appl. Phys. 113, 024509 (2013)

    Article  Google Scholar 

  16. Black, L.E., McIntosh, K.R.: Modeling recombination at the Si–Al\(_2\)O\(_3\) interface. IEEE J. Photovolt. 3, 936–943 (2013)

    Article  Google Scholar 

  17. Black, L.E., Allen, T., McIntosh, K.R.: Safe and inexpensive Al\(_2\)O\(_3\) deposited by APCVD with single-source precursor. In: Proceedings of 28th European Photovoltaic Solar Energy Conference, pp. 1068–1072, Paris, France (2013)

    Google Scholar 

  18. Black, L.E., Allen, T., McIntosh, K.R., Cuevas, A.: Effect of boron concentration on recombination at the \(p\)-Si–Al\(_2\)O\(_3\) interface. J. Appl. Phys. 115, 093707 (2014)

    Article  Google Scholar 

  19. Black, L.E., Allen, T., Cuevas, A., McIntosh, K.R., Veith, B., Schmidt, J.: Thermal stability of silicon surface passivation by APCVD Al\(_2\)O\(_3\). Sol. Energy Mater. Sol. Cells 120, Part A, 339–345 (2014)

    Article  Google Scholar 

  20. Dingemans, G., Terlinden, N.M., Pierreux, D., Profijt, H.B., Sanden, M.C.M.v d, Kessels, W.M.M.: Influence of the oxidant on the chemical and field-effect passivation of Si by ALD Al\(_2\)O\(_3\). Electrochem. Solid State Lett. 14, H1–H4 (2011)

    Google Scholar 

  21. Saint-Cast, P., Kania, D., Heller, R., Kuehnhold, S., Hofmann, M., Rentsch, J., Preu, R.: High-temperature stability of c-Si surface passivation by thick PECVD Al\(_2\)O\(_3\) with and without hydrogenated capping layers. Appl. Surf. Sci. 258, 8371–8376 (2012)

    Article  Google Scholar 

  22. Kuhn, M., Nicollian, E.H.: Nonequilibrium effects in quasi-static MOS measurements. J. Electrochem. Soc. 118, 370–373 (1971)

    Article  Google Scholar 

  23. Hofstein, S.R., Warfield, G.: Physical limitations on the frequency response of a semiconductor surface inversion layer. Solid-State Electron. 8, 321–341 (1965)

    Article  Google Scholar 

  24. Nicollian, E.H., Goetzberger, A.: MOS conductance technique for measuring surface state parameters. Appl. Phys. Lett. 7, 216–219 (1965)

    Article  Google Scholar 

  25. Nicollian, E.H., Goetzberger, A.: The Si–SiO\(_2\) interface—electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Tech. J. 46, 1055–1133 (1967)

    Article  Google Scholar 

  26. Nicollian, E.H., Brews, J.R.: MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley, New York (1982)

    Google Scholar 

  27. Aberle, A.G., Glunz, S., Warta, W.: Impact of illumination level and oxide parameters on Shockley-Read-Hall recombination at the Si–SiO\(_2\) interface. J. Appl. Phys. 71, 4422–4431 (1992)

    Article  Google Scholar 

  28. Schmidt, J., Schuurmans, F.M., Sinke, W.C., Glunz, S.W., Aberle, A.G.: Observation of multiple defect states at silicon-silicon nitride interfaces fabricated by low-frequency plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 71, 252–254 (1997)

    Article  Google Scholar 

  29. Glunz, S.W., Biro, D., Rein, S., Warta, W.: Field-effect passivation of the SiO2-Si interface. J. Appl. Phys. 86, 683–691 (1999)

    Article  Google Scholar 

  30. McIntosh, K.R., Baker-Finch, S.C., Grant, N.E., Thomson, A.F., Singh, S., Baikie, I.D.: Charge density in atmospheric pressure chemical vapor deposition TiO\(_2\) on SiO\(_2\)-passivated silicon. J. Electrochem. Soc. 156, G190–G195 (2009)

    Article  Google Scholar 

  31. Steingrube, S., Altermatt, P.P., Steingrube, D.S., Schmidt, J., Brendel, R.: Interpretation of recombination at c-Si/SiN\(_x\) interfaces by surface damage. J. Appl. Phys. 108, 014506 (2010)

    Article  Google Scholar 

  32. Werner, F., Cosceev, A., Schmidt, J.: Interface recombination parameters of atomic-layer-deposited Al\(_2\)O\(_3\) on crystalline silicon. J. Appl. Phys. 111, 073710 (2012)

    Article  Google Scholar 

  33. Cooper Jr., J.A., Schwartz, R.J.: Electrical characteristics of the SiO\(_2\)-Si interface near midgap and in weak inversion. Solid-State Electron. 17, 641–654 (1974)

    Article  Google Scholar 

  34. Black, L.E., McIntosh, K.R.: Surface passivation of c-Si by atmospheric pressure chemical vapor deposition of Al\(_2\)O\(_3\). Appl. Phys. Lett. 100, 202107 (2012)

    Article  Google Scholar 

  35. Taoka, N., Yamamoto, T., Harada, M., Yamashita, Y., Sugiyama, N., Takagi, S.: Importance of minority carrier response in accurate characterization of Ge metal-insulator-semiconductor interface traps. J. Appl. Phys. 106, 044506 (2009)

    Article  Google Scholar 

  36. Tanaka, T., Iwauchi, S.: Interface characteristics of the reactively sputtered Al\(_2\)O\(_3\)-Si structure. Jpn. J. Appl. Phys. 8, 730–738 (1969)

    Article  Google Scholar 

  37. Preier, H.: Contributions of surface states to MOS impedance. Appl. Phys. Lett. 10, 361–363 (1967)

    Article  Google Scholar 

  38. Saint-Cast, P., Heo, Y.-H., Billot, E., Olwal, P., Hofmann, M., Rentsch, J., Glunz, S.W., Preu, R.: Variation of the layer thickness to study the electrical property of PECVD Al\(_2\)O\(_3\) / c-Si interface. Energy Procedia 8, 642–647 (2011)

    Article  Google Scholar 

  39. Füssel, W., Schmidt, M., Angermann, H., Mende, G., Flietner, H.: Defects at the Si/SiO\(_2\) interface: their nature and behaviour in technological processes and stress. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 377, 177–183 (1996)

    Article  Google Scholar 

  40. Berglund, C.N.: Surface states at steam-grown silicon-silicon dioxide interfaces. IEEE Trans. Electron Devices 13, 701–705 (1966)

    Article  Google Scholar 

  41. Misiakos, K., Tsamakis, D.: Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K. J. Appl. Phys. 74, 3293–3297 (1993)

    Article  Google Scholar 

  42. Schöfthaler, M., Brendel, R., Langguth, G., Werner, J.H.: High-quality surface passivation by corona-charged oxides for semiconductor surface characterization. In: Proceedings of 1st World Conference Photovoltaic Energy Conversion, vol. 2, pp. 1509–1512. Waikoloa, Hawaii, USA (1994)

    Google Scholar 

  43. Dauwe, S., Schmidt, J., Metz, A., Hezel, R.: Fixed charge density in silicon nitride films on crystalline silicon surfaces under illumination, pp. 162–165 (2002)

    Google Scholar 

  44. Jellett, W.E., Weber, K.J.: Accurate measurement of extremely low surface recombination velocities on charged, oxidized silicon surfaces using a simple metal-oxide-semiconductor structure. Appl. Phys. Lett. 90, 042104 (2007)

    Article  Google Scholar 

  45. Weber, K.J., Jin, H., Zhang, C., Nursam, N., Jellett, W.E., McIntosh, K.R.: Surface passivation using dielectric films: how much charge is enough? In: Proceedings of 24th European Photovoltaic Solar Energy Conference, pp. 534–537 (2009)

    Google Scholar 

  46. Kho, T.C., Baker-Finch, S.C., McIntosh, K.R.: The study of thermal silicon dioxide electrets formed by corona discharge and rapid-thermal annealing. J. Appl. Phys. 109, 053108 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lachlan E. Black .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Black, L.E. (2016). Electrical Properties of the Si–Al\(_{2}\)O\(_{3}\) Interface. In: New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-32521-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32521-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32520-0

  • Online ISBN: 978-3-319-32521-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics