Skip to main content

Interaction Between Vitamin D and Calcimimetics in Chronic Kidney Disease

  • Chapter
  • First Online:
Vitamin D in Chronic Kidney Disease

Abstract

For many years vitamin D has been the only available drug to suppress parathyroid hormone (PTH) hypersecretion in patients with renal insufficiency. This effect is accomplished directly through activation of the vitamin D receptor (VDR) on parathyroid cells. However, vitamin D also stimulates intestinal absorption of calcium and phosphate, thus often resulting in hypercalcemia and hyperphosphatemia, both undesirable in renal patients. For this reason vitamin D analogs with less calcemic effects have been developed, with some improvement of this problematic effect. The discovery of calcium sensing receptor (CaSR) and the subsequent production of drugs capable of stimulating it, has allowed the introduction of calcimimetics as an alternative therapy to vitamin D. Cinacalcet, the first to be available for clinical uses, has been successfully employed to reduce serum PTH levels in patients with end stage renal disease. At variance with vitamin D, calcimimetics, while decreasing PTH, also decrease serum levels of calcium and phosphate. The effect on serum calcium is of such entity that symptomatic hypocalcemia may occur. As a consequence, vitamin D is frequently associated and instead of becoming an alternative, cinacalcet is mostly prescribed together with vitamin D. Importantly, we have clear experimental evidence that vitamin D administration increases the expression of CaSR on target cells and that, reciprocally, calcimimetics increase VDR expression. This interaction allows presuming potential clinical advantages to control secondary hyperparathyroidism. Further, since both VDR and CaSR are expressed also in tissues not involved with mineral metabolism, other still unpredicted clinical effects are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazzaferro S, Pasquali M. Vitamin D: a dynamic molecule. How relevant might the dynamism for a vitamin be? Nephrol Dial Transplant. 2016;31:23–30.

    Google Scholar 

  2. Parfitt A. The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone diseases. Metabolism. 1976;25(8):909–55.

    Article  CAS  PubMed  Google Scholar 

  3. Brent G, Leboff M, Seely E, Conlin P, Brown E. Relationship between the concentration and rate of change of calcium and serum intact parathyroid hormone levels in normal humans. J Clin Endocrinol Metab. 1988;67(5):944–50.

    Article  CAS  PubMed  Google Scholar 

  4. Brown E, Gardner D, Brennan M, Marx S, Spiegel A, Attie M, et al. Calcium-regulated parathyroid hormone release in primary hyperparathyroidism. Am J Med. 1979;66(6):923–31.

    Article  CAS  PubMed  Google Scholar 

  5. Brown E, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature. 1993;366(6455):575–80.

    Article  CAS  PubMed  Google Scholar 

  6. Capuano I, Garrett J, Hammerland L, Hung B, Brown E, Hebert S, et al. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J Biol Chem. 1995;270(21):12919–25.

    Article  PubMed  Google Scholar 

  7. Hubbard P, Canário A. Evidence that olfactory sensitivities to calcium and sodium are mediated by different mechanisms in the goldfish Carassiusauratus. Neurosci Lett. 2007;414(1):90–3.

    Article  CAS  PubMed  Google Scholar 

  8. Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, et al. Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish. Proc Natl Acad Sci U S A. 2002;99(14):9231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kolakowski LF. GCRDb: a G protein coupled receptor database. Recept Channels. 1994;2(1):1–7.

    CAS  PubMed  Google Scholar 

  10. Fan G, Ray K, Zhao X, Goldsmith P, Spiegel A. Mutational analysis of the cysteines in the extracellular domain of the human Ca2+ receptor: effects on cell surface expression, dimerization and signal transduction. FEBS Lett. 1998;436(3):353–6.

    Article  CAS  PubMed  Google Scholar 

  11. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81:239–97.

    CAS  PubMed  Google Scholar 

  12. Silve C, Petrel C, Leroy C, Bruel H, Mallet E, Rognan D, et al. Delineating a Ca2+ binding pocket within the venus flytrap module of the human calcium-sensing receptor. J Biol Chem. 2005;280(45):37917–23.

    Article  CAS  PubMed  Google Scholar 

  13. Hendy G, Canaff L, Cole D. The CASR gene: alternative splicing and transcriptional control, and calcium-sensing receptor (CaSR) protein: structure and ligand binding sites. Best Pract Res Clin Endocrinol Metab. 2013;27(3):285–301.

    Article  CAS  PubMed  Google Scholar 

  14. Tfelt-Hansen J, Brown E. The calcium-sensing receptor in normal physiology and pathophysiology: a review. Crit Rev Clin Lab Sci. 2005;42(1):35–70.

    Article  CAS  PubMed  Google Scholar 

  15. Hurowitz E, Melnyk J, Chen Y, Kouros-Mehr H, Simon M, Shizuya H. Genomic characterization of the human heterotrimeric G protein nd subunit genes. DNA Res. 2000;7(2):111–20.

    Article  CAS  PubMed  Google Scholar 

  16. Ward D. Calcium receptor-mediated intracellular signalling. Cell Calcium. 2004;35(3):217–28.

    Article  CAS  PubMed  Google Scholar 

  17. Hofer A, Brown E. Calcium: extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol. 2003;4(7):530–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rogers K, Dunn C, Hebert S, Brown E, Nemeth E. Pharmacological comparison of bovine parathyroid, human parathyroid, and rat kidney calcium receptors expressed in HEK 293 cells. J Bone Miner Res. 1995;10(Suppl1):S48.

    Google Scholar 

  19. Corbetta S, Lania A, Filopanti M, Vicentini L, Ballaré E, Spada A. Mitogen-activated protein kinase cascade in human normal and tumoral parathyroid cells. J Clin Endocrinol Metab. 2002;87(5):2201–5.

    Article  CAS  PubMed  Google Scholar 

  20. Emanuel R, Adler G, Kifor O, Quinn S, Fuller F, Krapcho K, et al. Calcium-sensing receptor expression and regulation by extracellular calcium in the AtT-20 pituitary cell line. Mol Endocrinol. 1996;10(5):555–65.

    CAS  PubMed  Google Scholar 

  21. Romoli R, Lania A, Mantovani G, Corbetta S, Persani L, Spada A. Expression of calcium-sensing receptor and characterization of intracellular signaling in human pituitary adenomas 1. J Clin Endocrinol Metab. 1999;84(8):2848–53.

    CAS  PubMed  Google Scholar 

  22. Leclercq-Meyer V, Marchand J, Leclercq R, Malaisse W. Calcium deprivation enhances glucagon release in the presence of 2-ketoisocaproate. Endocrinology. 1981;108(6):2093–7.

    Article  CAS  PubMed  Google Scholar 

  23. Procino G, Carmosino M, Tamma G, Gouraud S, Laera A, Riccardi D, et al. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int. 2004;66(6):2245–55.

    Article  CAS  PubMed  Google Scholar 

  24. Valle C, Rodriguez M, Santamaria R, Almaden Y, Rodriguez M, Canadillas S, et al. Cinacalcet reduces the set point of the PTH-calcium curve. J Am Soc Nephrol. 2008;19(12):2430–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nechama M, Ben-Dov I, Silver J, Naveh-Many T. Regulation of PTH mRNA stability by the calcimimetic R568 and the phosphorus binder lanthanum carbonate in CKD. Am J Physiol Ren Physiol. 2009;296(4):F795–800.

    Article  CAS  Google Scholar 

  26. Marx SJ. Hyperplasia in glands with hormone excess. Endocr Relat Cancer. 2016;23:R1–14.

    Article  PubMed  Google Scholar 

  27. Diaz R, Hurwitz S, Chattopadhyay N, Pines M, Yang Y, Kifor O, Einat MS, Butters R, Hebert SC, Brown EM. Cloning, expression, and tissue localization of the calcium-sensing receptor in chicken (Gallus domesticus). Am J Physiol Regul Integr Comp Physiol. 1997;273:R1008–16.

    CAS  Google Scholar 

  28. Kifor O, Moore F, Wang P, Goldstein M, Vassilev P, Kifor I, et al. Reduced immunostaining for the extracellular Ca2+-sensing receptor in primary and uremic secondary hyperparathyroidism. J Clin Endocrinol Metab. 1996;81(4):1598–606.

    CAS  PubMed  Google Scholar 

  29. Gogusev J, Duchambon P, Hory B, Giovannini M, Goureau Y, Sarfati E, et al. Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney Int. 1997;51(1):328–36.

    Article  CAS  PubMed  Google Scholar 

  30. Ritter C, Finch J, Slatopolsky E, Brown A. Parathyroid hyperplasia in uremic rats precedes down-regulation of the calcium receptor. Kidney Int. 2001;60(5):1737–44.

    Article  CAS  PubMed  Google Scholar 

  31. Cozzolino M, Lu Y, Finch J, Slatopolsky E, Dusso A. p21WAF1 and TGF-α mediate parathyroid growth arrest by vitamin D and high calcium. Kidney Int. 2001;60(6):2109–17.

    Article  CAS  PubMed  Google Scholar 

  32. Yarden N, Lavelin I, Genina O, Hurwitz S, Diaz R, Brown E, et al. Expression of calcium-sensing receptor gene by avian parathyroid gland in vivo: relationship to plasma calcium. Gen Comp Endocrinol. 2000;117(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  33. Mendoza F, Lopez I, Canalejo R, Almaden Y, Martin D, Aguilera-Tejero E, et al. Direct upregulation of parathyroid calcium-sensing receptor and vitamin D receptor by calcimimetics in uremic rats. Am J Physiol Ren Physiol. 2008;296(3):F605–13.

    Article  CAS  Google Scholar 

  34. Carrillo-Lopez N, Alvarez-Hernandez D, Gonzalez-Suarez I, Roman-Garcia P, Valdivielso J, Fernandez-Martin J, et al. Simultaneous changes in the calcium-sensing receptor and the vitamin D receptor under the influence of calcium and calcitriol. Nephrol Dial Transplant. 2008;23(11):3479–84.

    Article  CAS  PubMed  Google Scholar 

  35. Boynton AL. Calcium and epithelial cell proliferation. Miner Electrolyte Metab. 1988;14:86–94.

    CAS  PubMed  Google Scholar 

  36. Canaff L, Hendy G. Human calcium-sensing receptor gene. Vitamin d response elements in promoters p1 and p2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin d. J Biol Chem. 2002;277(33):30337–50.

    Article  CAS  PubMed  Google Scholar 

  37. Aida K, Koishi S, Tawata M, Onaya T. Molecular cloning of a putative Ca2+-sensing receptor cDNA from human kidney. Biochem Biophys Res Comm. 1995;214(2):524–9.

    Article  CAS  PubMed  Google Scholar 

  38. Chattopadhyay N, Baum M, Bai M, Riccardi D, Hebert SC, Harris HW, Brown EM. Ontogeny of the extracellular calcium-sensing receptorin rat kidney. Am J Physiol Renal Fluid Electrolyte Physiol. 1996;271:F736–43.

    CAS  Google Scholar 

  39. Riccardi D, Park J, Lee W, Gamba G, Brown E, Hebert S. Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Nat Acad Sci. 1995;92(1):131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Toka H, Al-Romaih K, Koshy J, DiBartolo S, Kos C, Quinn S, et al. Deficiency of the calcium-sensing receptor in the kidney causes parathyroid hormone-independent hypocalciuria. J Am Soc Nephrol. 2012;23(11):1879–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bajwa A, Forster M, Maiti A, Woolbright B, Beckman M. Specific regulation of CYP27B1 and VDR in proximal versus distal renal cells. Arch Biochem Biophys. 2008;477(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  42. Maiti A, Hait N, Beckman M. Extracellular calcium-sensing receptor activation induces vitamin D receptor levels in proximal kidney HK-2G cells by a mechanism that requires phosphorylation of p38 MAPK. J Biol Chem. 2007;283(1):175–83.

    Article  PubMed  CAS  Google Scholar 

  43. Levi M, Molitoris BA, Burke TJ, Schrier RW, Simon FR. Effects of vitamin D-induced chronic hypercalcemia on rat renal cortical plasma membranes and mitochondria. Am J Physiol Renal Fluid Electrolyte Physiol. 1987;252:F267–75.

    CAS  Google Scholar 

  44. Wang W, Lu M, Balazy M, Hebert SC. Phospholipase A2 is involved in mediating the effect of extracellular Ca2_ on apical K_ channels in ratTAL. Am J Physiol Renal Physiol. 1997;273:F421–9.

    CAS  Google Scholar 

  45. Sands JM, Flores FX, Kato A, Baum MA, Brown EM, Ward DT, Hebert SC, Harris HW. Vasopressin-elicited water and urea permeabilities are altered in IMCD in hypercalcemic rats. Am J Physiol Renal Physiol. 1998;274:F978–85.

    CAS  Google Scholar 

  46. Topala C, Schoeber J, Searchfield L, Riccardi D, Hoenderop J, Bindels R. Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell Calcium. 2009;45(4):331–9.

    Article  CAS  PubMed  Google Scholar 

  47. Hoenderop J. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice. FASEB J. 2002;16(11):1398–406.

    Article  CAS  PubMed  Google Scholar 

  48. Mentaverri R, Yano S, Chattopadhyay N, Petit L, Kifor O, Kamel S, et al. The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J. 2006;20(14):2562–4.

    Article  CAS  PubMed  Google Scholar 

  49. Kameda T, Mano H, Yamada Y, Takai H, Amizuka N, Kobori M, et al. Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Comm. 1998;245(2):419–22.

    Article  CAS  PubMed  Google Scholar 

  50. Kanatani M, Sugimoto T, Kanzawa M, Yano S, Chihara K. High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem Biophys Res Comm. 1999;261(1):144–8.

    Article  CAS  PubMed  Google Scholar 

  51. Chattopadhyay N, Yano S, Tfelt-Hansen J, Rooney P, Kanuparthi D, Bandyopadhyay S, et al. Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinology. 2004;145(7):3451–62.

    Article  CAS  PubMed  Google Scholar 

  52. Dvorak M, Siddiqua A, Ward D, Carter D, Dallas S, Nemeth E, et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Nat Acad Sci. 2004;101(14):5140–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chang W, Tu C, Chen T, Bikle D, Shoback D. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci Signal. 2008;1(35):ra1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Carlstedt F, Lind L, Rastad J, Stjernstrom H, Wide L, Ljunghall S. Parathyroid hormone and ionized calcium levels are related to the severity of illness and survival in critically ill patients. Eur J Clin Invest. 1998;28(11):898–903.

    Article  CAS  PubMed  Google Scholar 

  55. Nielsen P, Rasmussen Å, Butters R, Feldt-Rasmussen U, Bendtzen K, Diaz R, et al. Inhibition of PTH secretion by interleukin-1β in bovine parathyroid glandsin vitro is associated with an up-regulation of the calcium-sensing receptor mRNA. Biochem Biophys Res Comm. 1997;238(3):880–5.

    Article  CAS  PubMed  Google Scholar 

  56. Canaff L, Hendy G. Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine, interleukin-1: role of the nf- b pathway and b elements. J Biol Chem. 2005;280(14):14177–88.

    Article  CAS  PubMed  Google Scholar 

  57. Carlstedt E, Ridefelt P, Lind L, Rastad J. Interleukin-6 induced suppression of bovine parathyroid hormone secretion. Biosci Rep. 1999;19:35–42.

    Article  CAS  PubMed  Google Scholar 

  58. Brown A, Ritter C, Finch J, Slatopolsky E. Decreased calcium-sensing receptor expression in hyperplastic parathyroid glands of uremic rats: role of dietary phosphate. Kidney Int. 1999;55(4):1284–92.

    Article  CAS  PubMed  Google Scholar 

  59. Ritter C, Martin D, Lu Y, Slatopolsky E, Brown A. Reversal of secondary hyperparathyroidism by phosphate restriction restores parathyroid calcium-sensing receptor expression and function. J Bone Miner Res. 2002;17(12):2206–13.

    Article  CAS  PubMed  Google Scholar 

  60. Urena P, Frazao J. Calcimimetic agents: review and perspectives. Kidney Int. 2003;63(s85):91–6.

    Article  Google Scholar 

  61. Aida K. Familial hypocalciuric hypercalcemia associated with mutation in the human Ca(2+)-sensing receptor gene. J Clin Endocrinol Metab. 1995;80(9):2594–8.

    CAS  PubMed  Google Scholar 

  62. Quitterer U, Hoffmann M, Freichel M, Lohse M. Paradoxical block of parathormone secretion is mediated by increased activity of galpha subunits. J Biol Chem. 2000;276(9):6763–9.

    Article  PubMed  Google Scholar 

  63. Higashijima T, Ferguson KM, Sternweis PC, Smigel MD, Gilman AG. Effects of Mg2+ and the beta gamma-subunit complex on the interactions of guanine nucleotides with G proteins. J Biol Chem. 1987;262(2):762–6.

    CAS  PubMed  Google Scholar 

  64. La Piana G, Gorgoglione V, Laraspata D, Marzulli D, Lofrumento N. Effect of magnesium ions on the activity of the cytosolic NADH/cytochrome c electron transport system. FEBS J. 2008;275(24):6168–79.

    Article  PubMed  CAS  Google Scholar 

  65. McLarnon S, Holden D, Ward D, Jones M, Elliott A, Riccardi D. Aminoglycoside antibiotics induce pH-sensitive activation of the calcium-sensing receptor. Biochem Biophys Res Comm. 2002;297(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  66. Ward D. Aminoglycosides induce acute cell signaling and chronic cell death in renal cells that express the calcium-sensing receptor. J Am Soc Nephrol. 2005;16(5):1236–44.

    Article  CAS  PubMed  Google Scholar 

  67. Conigrave A, Mun H, Brennan S. Physiological significance of L-amino acid sensing by extracellular Ca 2+ -sensing receptors. Biochem Soc Trans. 2007;35(5):1195–8.

    Article  CAS  PubMed  Google Scholar 

  68. Busque S. L-type amino acids stimulate gastric acid secretion by activation of the calcium-sensing receptor in parietal cells. Am J Physiol Gastrointest Liver Physiol. 2005;289:G1084–90.

    Google Scholar 

  69. Dawson-Hughes B, Harris S, Rasmussen H, Dallal G. Comparative effects of oral aromatic and branched-chain amino acids on urine calcium excretion in humans. Osteop Int. 2007;18(7):955–61.

    Article  CAS  Google Scholar 

  70. Conigrave A, et al. L-Amino acid sensing by the calcium-sensing receptor: a general mechanism for coupling protein and calcium metabolism? Eur J Clin Nutr. 2003;57(7):879.

    Article  Google Scholar 

  71. Hira T, Nakajima S, Eto Y, Hara H. Calcium-sensing receptor mediates phenylalanine-induced cholecystokinin secretion in enteroendocrine STC-1 cells. FEBS J. 2008;275(18):4620–6.

    Article  CAS  PubMed  Google Scholar 

  72. Nemeth E, Steffey M, Hammerland L, Hung B, Van Wagenen B, DelMar E, et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Nat Acad Sci. 1998;95(7):4040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goodman W, Frazao J, Goodkin D, Turner S, Liu W, Coburn J. A calcimimetic agent lowers plasma parathyroid hormone levels in patients with secondary hyperparathyroidism. Kidney Int. 2000;58(1):436–45.

    Article  CAS  PubMed  Google Scholar 

  74. Messa P, Alfieri C, Brezzi B. Cinacalcet: pharmacological and clinical aspects. Expert Opin Drug Metab Toxicol. 2008;4(12):1551–60.

    Article  CAS  PubMed  Google Scholar 

  75. Miller G, Davis J, Shatzen E, Colloton M, Martin D, Henley C. Cinacalcet HCl prevents development of parathyroid gland hyperplasia and reverses established parathyroid gland hyperplasia in a rodent model of CKD. Nephrol Dial Transplant. 2011;27(6):2198–205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rodriguez M, Almaden Y, Canadillas S, Canalejo A, Siendones E, Lopez I, et al. The calcimimetic R-568 increases vitamin D receptor expression in rat parathyroid glands. Am J Physiol Ren Physiol. 2007;292(5):F1390–5.

    Article  CAS  Google Scholar 

  77. Sumida K, Nakamura M, Ubara Y, Marui Y, Tanaka K, Takaichi K, et al. Cinacalcet upregulates calcium-sensing receptors of parathyroid glands in hemodialysis patients. Am J Nephrol. 2013;37(5):405–12.

    Article  CAS  PubMed  Google Scholar 

  78. Tatsumi R, Komaba H, Kanai G, Miyakogawa T, Sawada K, Kakuta T, et al. Cinacalcet induces apoptosis in parathyroid cells in patients with secondary hyperparathyroidism: histological and cytological analyses. Nephron Clin Pract. 2013;124(3–4):224–31.

    Article  CAS  PubMed  Google Scholar 

  79. Quarles L. The calcimimetic AMG 073 as a potential treatment for secondary hyperparathyroidism of end-stage renal disease. J Am Soc Nephrol. 2003;14(3):575–83.

    Article  CAS  PubMed  Google Scholar 

  80. Lindberg J, Moe S, Goodman W, Coburn J, Sprague S, Liu W, et al. The calcimimetic AMG 073 reduces parathyroid hormone and calcium x phosphorus in secondary hyperparathyroidism. Kidney Int. 2003;63(1):248–54.

    Article  CAS  PubMed  Google Scholar 

  81. Block GA, Martin KJ, de Francisco AL, Turner SA, Avram MM, Suranyi MG, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med. 2004;350(15):1516–25.

    Article  CAS  PubMed  Google Scholar 

  82. Komaba H, Koizumi M, Tanaka H, Takahashi H, Sawada K, Kakuta T, et al. Effects of cinacalcet treatment on serum soluble Klotho levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol Dial Transplant. 2011;27(5):1967–9.

    Article  PubMed  CAS  Google Scholar 

  83. Shalhoub V, Grisanti M, Padagas J, Scully E, Rattan A, Qi M, et al. In vitro studies with the calcimimetic, cinacalcet HCl, on normal human adult osteoblastic and osteoclastic cells. Crit Rev Eukaryot Gene Expr. 2003;13(2–4):107–8.

    Google Scholar 

  84. Behets G, Spasovski G, Sterling L, Goodman W, Spiegel D, De Broe M, et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. 2014;87(4):846–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mendoza F, Martinez-Moreno J, Almaden Y, Rodriguez-Ortiz M, Lopez I, Estepa J, et al. Effect of calcium and the calcimimetic AMG 641 on matrix-Gla protein in vascular smooth muscle cells. Calcif Tissue Int. 2010;88(3):169–78.

    Article  PubMed  CAS  Google Scholar 

  86. Jung S, Querfeld U, Müller D, Rudolph B, Peters H, Krämer S. Submaximal suppression of parathyroid hormone ameliorates calcitriol-induced aortic calcification and remodeling and myocardial fibrosis in uremic rats. J Hypertens. 2012;30(11):2182–91.

    Article  CAS  PubMed  Google Scholar 

  87. Alam M, Kirton J, Wilkinson F, Towers E, Sinha S, Rouhi M, et al. Calcification is associated with loss of functional calcium-sensing receptor in vascular smooth muscle cells. Cardiovasc Res. 2008;81(2):260–8.

    Article  PubMed  CAS  Google Scholar 

  88. Zizzo M, Mulè F, Amato A, Maiorana F, Mudò G, Belluardo N, et al. Guanosine negatively modulates the gastric motor function in mouse. Purinergic Signal. 2013;9(4):655–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Walter S, Baruch A, Dong J, Tomlinson J, Alexander S, Janes J, et al. Pharmacology of AMG 416 (velcalcetide), a novel peptide agonist of the calcium-sensing receptor, for the treatment of secondary hyperparathyroidism in hemodialysis patients. J Pharmacol Exp Ther. 2013;346(2):229–40.

    Article  CAS  PubMed  Google Scholar 

  90. Martin K, Bell G, Pickthorn K, Huang S, Vick A, Hodsman P, et al. Velcalcetide (AMG 416), a novel peptide agonist of the calcium-sensing receptor, reduces serum parathyroid hormone and FGF23 levels in healthy male subjects. Nephrol Dial Transplant. 2013;29(2):385–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Martin K, Pickthorn K, Huang S, Block G, Vick A, Mount P, et al. AMG 416 (velcalcetide) is a novel peptide for the treatment of secondary hyperparathyroidism in a single-dose study in hemodialysis patients. Kidney Int. 2013;85(1):191–7.

    Article  PubMed  CAS  Google Scholar 

  92. Bell G, Huang S, Martin K, Block G. A randomized, double-blind, phase 2 study evaluating the safety and efficacy of AMG 416 for the treatment of secondary hyperparathyroidism in hemodialysis patients. Curr Med Res Opin. 2015;31(5):943–52.

    Article  CAS  PubMed  Google Scholar 

  93. Brown EM. Vitamin D and the calcium sensing receptor. In: Feldman D, Pike JW, Adams JS, editors. Vitamin D. 3rd ed. Oxford, UK: Elsevier; 2011. p. 425–56.

    Google Scholar 

  94. Rodriguez M, Aguilera-Tejero E, Mendoza FJ, Guerrero F, López I. Effects of calcimimetics on extraskeletal calcifications in chronic kidney disease. Kidney Int Suppl. 2008;111:S50–4.

    Article  CAS  PubMed  Google Scholar 

  95. Lopez I, Aguilera-Tejero E, Mendoza FJ, Almaden Y, Perez J, Martin D, Rodriguez M. Calcimimetic R-568 decreases extraosseous calcifications in uremic rats treated with calcitriol. J Am Soc Nephrol. 2006;17(3):795–804.

    Article  CAS  PubMed  Google Scholar 

  96. Mary A, Hénaut L, Boudot C, et al. Calcitriol prevents in vitro vascular smooth muscle cell mineralization by regulating calcium-sensing receptor expression. Endocrinology. 2015;156(6):1965–74.

    Article  CAS  PubMed  Google Scholar 

  97. Drüeke TB, Ritz E. Treatment of secondary hyperparathyroidism in CKD patients with cinacalcet and/or vitamin D derivatives. Clin J Am Soc Nephrol. 2009;4(1):234–41.

    Article  PubMed  CAS  Google Scholar 

  98. Chertow GM, Blumenthal S, Turner S, Roppolo M, Stern L, Chi EM, Reed J, CONTROL Investigators. Cinacalcet hydrochloride (Sensipar) in hemodialysis patients on active vitamin D derivatives with controlled PTH and elevated calcium x phosphate. Clin J Am Soc Nephrol. 2006;1(2):305–12.

    Article  CAS  PubMed  Google Scholar 

  99. Messa P, Macário F, Yaqoob M, et al. The OPTIMA study: assessing a new cinacalcet (Sensipar/Mimpara) treatment algorithm for secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2008;3(1):36–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fishbane S, Shapiro WB, Corry DB, et al. CinacalcetHCl and concurrent low-dose vitamin D improves treatment of secondary hyperparathyroidism in dialysis patients compared with vitamin D alone: the ACHIEVE study results. Clin J Am Soc Nephrol. 2008;3(6):1718–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ketteler M, Martin KJ, Wolf M, et al. Paricalcitol versus cinacalcet plus low-dose vitamin D therapy for the treatment of secondary hyperparathyroidism in patients receiving haemodialysis: results of the IMPACT SHPT study. Nephrol Dial Transplant. 2012;27(8):3270–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cozzolino M, Ketteler M, Martin KJ, Sharma A, Goldsmith D, Khan S. Paricalcitol- or cinacalcet-centred therapy affects markers of bone mineral disease in patients with secondary hyperparathyroidism receiving haemodialysis: results of the IMPACT-SHPT study. Nephrol Dial Transplant. 2014;29(4):899–905.

    Article  CAS  PubMed  Google Scholar 

  103. Lewis R. Mineral and bone disorders in chronic kidney disease: new insights into mechanism and management. Ann Clin Biochem. 2012;49(5):432–40.

    Article  CAS  PubMed  Google Scholar 

  104. Koizumi M, Komaba H, Nakanishi S, et al. Cinacalcet treatment and serum FGF23 levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol Dial Transplant. 2012;27(2):784–90.

    Article  CAS  PubMed  Google Scholar 

  105. Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15.

    Article  CAS  PubMed  Google Scholar 

  106. Drechsler C, Verduijn M, Pilz S, et al. Bone alkaline phosphatase and mortality in dialysis patients. Clin J Am Soc Nephrol. 2011;6:1752–9.

    Article  CAS  PubMed  Google Scholar 

  107. Gutiérrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–92.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lee GH, Benner D, Regidor DL, et al. Impact of kidney bone disease and its management on survival of patients on dialysis. J Ren Nutr. 2007;17(1):38–44.

    Article  PubMed  Google Scholar 

  109. Tentori F, Hunt WC, Stidley CA, for the Medical Directors of Dialysis Clinic Inc, et al. Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int. 2006;70(10):1858–65.

    Article  CAS  PubMed  Google Scholar 

  110. Wetmore JB, Gurevich K, Sprague S, et al. A randomized trial of cinacalcet versus vitamin D analogs as monotherapy in secondary hyperparathyroidism (PARADIGM). Clin J Am Soc Nephrol. 2015;10(6):1031–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Raggi P, Chertow GM, Urena Torres P, on behalf of the ADVANCE Study Group, et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant. 2011;26(4):1327–39.

    Article  CAS  PubMed  Google Scholar 

  112. Chertow GM, Block GA, Correa-Rotter R, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. EVOLVE Trial Investigators. N Engl J Med. 2012;367(26):2482–94.

    Article  CAS  PubMed  Google Scholar 

  113. Moe SM, Chertow GM, Parfrey PS, Evaluation of CinacalcetHCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial Investigators*, et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the Evaluation of CinacalcetHCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial. Circulation. 2015;132(1):27–39.

    Article  CAS  PubMed  Google Scholar 

  114. Moe SM, Abdalla S, Chertow GM, et al. Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE Trial. J Am Soc Nephrol. 2015;26(6):1466–75.

    Article  CAS  PubMed  Google Scholar 

  115. Montenegro J, Cornago I, Gallardo I, et al. Efficacy and safety of cinacalcet for the treatment of secondary hyperparathyroidism in patients with advanced chronic kidney disease before initiation of regular dialysis. Nephrol (Carlton). 2012;17(1):26–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Mazzaferro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mazzaferro, S., Tartaglione, L., Rotondi, S., Pasquali, M. (2016). Interaction Between Vitamin D and Calcimimetics in Chronic Kidney Disease. In: Ureña Torres, P., Cozzolino, M., Vervloet, M. (eds) Vitamin D in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-32507-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32507-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32505-7

  • Online ISBN: 978-3-319-32507-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics