Skip to main content

Molecular Biology of Vitamin D: Genomic and Nongenomic Actions of Vitamin D in Chronic Kidney Disease

  • Chapter
  • First Online:
Vitamin D in Chronic Kidney Disease
  • 967 Accesses

Abstract

Chronic kidney disease (CKD) progression is characterized by features of accelerated aging (bone loss, increased propensity for fractures and vascular calcification, hypertension and cardiovascular disease) and a risk of mortality 20- to 30-fold higher than in age- and gender-matched individuals with normal renal function. The progressive loss of renal capacity to maintain the functional integrity of the vitamin D endocrine system is a main determinant of the severe pro-aging features that reduce survival. The goal of this chapter is an update of the progress of the last 5 years in our understanding of the molecular pathophysiology underlying CKD-induced abnormalities in: (a) Systemic and local vitamin D bioactivation to its hormonal form, 1,25-dihydroxyvitamin D or calcitriol; (b) Classical genomic and non-genomic actions of the calcitriol/vitamin D receptor (VDR) complex that compromise survival, and (c) Synergistic VDR activation by calcitriol and its precursor, 25-hydroxyvitamin D, to counteract VDR reductions.

Special focus is directed to the molecular bases supporting the paradigm switch to maximize calcitriol/VDR anti-aging actions. Specifically, from suppression of the PTH gene to attenuate the bone loss predisposing to vascular calcification, to the induction of the FGF23 and α-klotho genes to simultaneously control the pro-aging effects of hyperphosphatemia and of an excess of active vitamin D, while maintaining the plethora of anti-aging/pro-survival actions of renal and circulating klotho. Special attention is also directed into calcitriol/VDR distinct control of Wnt/β-catenin signals to promote mineralization in bone while preventing calcification in the vasculature, and into the emerging fields of calcitriol/VDR regulation of microRNA synthesis and klotho-independent anti-aging actions. This mechanistic knowledge is a mandatory first step to evaluate the accuracy of current biomarkers of disease severity and response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ortiz A, Covic A, Fliser D, et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet. 2014;383(9931):1831–43.

    Article  PubMed  Google Scholar 

  2. London GM, Guerin AP, Marchais SJ, et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003;18(9):1731–40.

    Article  PubMed  Google Scholar 

  3. Hu MC, Kuro-o M, Moe OW. The emerging role of Klotho in clinical nephrology. Nephrol Dial Transplant. 2012;27(7):2650–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ellam TJ, Chico TJ. Phosphate: the new cholesterol? The role of the phosphate axis in non-uremic vascular disease. Atherosclerosis. 2012;220(2):310–18.

    Article  CAS  PubMed  Google Scholar 

  5. Phan O, Burnier M, Wuezner G. Hypertension in chronic kidney disease – role of arterial calcification and impact on treatment. Eur Cardioil Rev. 2014;9(2):115–20.

    Article  Google Scholar 

  6. Kurts C, Panzer U, Anders HJ, et al. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol. 2013;13(10):738–53.

    Article  CAS  PubMed  Google Scholar 

  7. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nat. 1997;390(6655):45–51.

    Article  CAS  Google Scholar 

  8. Lindberg K, Amin R, Moe OW, et al. The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol. 2014;25(10):2169–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barker SL, Pastor J, Carranza D, et al. The demonstration of alphaKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant. 2015;30(2):223–33.

    Article  PubMed  Google Scholar 

  10. Adams JS, Hewison M. Update in vitamin D. J Clin Endocrinol Metab. 2010;95(2):471–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chowdhury R, Kunutsor S, Vitezova A, et al. Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ. 2014;348:g1903.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physio. 2005;289(1):F8–28.

    Article  CAS  Google Scholar 

  13. Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988;67(2):373–8.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng JB, Levine MA, Bell NH, et al. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A. 2004;101(20):7711–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heaney RP, Armas LA, Shary JR, et al. 25-Hydroxylation of vitamin D3: relation to circulating vitamin D3 under various input conditions. Am J Clin Nutr. 2008;87(6):1738–42.

    CAS  PubMed  Google Scholar 

  16. Zhu JG, Ochalek JT, Kaufmann M, et al. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A. 2013;110(39):15650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dusso AS, Tokumoto M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: a downward spiral in kidney disease. Kidney Int. 2011;79(7):715–29.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Aly Z, Qazi RA, Gonzalez EA, et al. Changes in serum 25-hydroxyvitamin D and plasma intact PTH levels following treatment with ergocalciferol in patients with CKD. Am J Kidney Dis. 2007;50(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  19. Moe SM, Saifullah A, LaClair RE, et al. A randomized trial of cholecalciferol versus doxercalciferol for lowering parathyroid hormone in chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(2):299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakano C, Hamano T, Fujii N, et al. Combined use of vitamin D status and FGF23 for risk stratification of renal outcome. Clin J Am Soc Nephrol. 2012;7(5):810–19.

    Article  CAS  PubMed  Google Scholar 

  21. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130.

    Google Scholar 

  22. LaClair RE, Hellman RN, Karp SL, et al. Prevalence of calcidiol deficiency in CKD: a cross-sectional study across latitudes in the United States. Am J Kidney Dis. 2005;45(6):1026–33.

    Article  CAS  PubMed  Google Scholar 

  23. Nykjaer A, Dragun D, Walther D, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell. 1999;96(4):507–15.

    Article  CAS  PubMed  Google Scholar 

  24. Takemoto F, Shinki T, Yokoyama K, et al. Gene expression of vitamin D hydroxylase and megalin in the remnant kidney of nephrectomized rats. Kidney Int. 2003;64(2):414–20.

    Article  CAS  PubMed  Google Scholar 

  25. Bachmann S, Schlichting U, Geist B, et al. Kidney-specific inactivation of the megalin gene impairs trafficking of renal inorganic sodium phosphate cotransporter (NaPi-IIa). J Am Soc Nephrol. 2004;15(4):892–900.

    Article  CAS  PubMed  Google Scholar 

  26. Liu W, Yu WR, Carling T, et al. Regulation of gp330/megalin expression by vitamins A and D. Eur J Clin Invest. 1998;28(2):100–7.

    Article  CAS  PubMed  Google Scholar 

  27. Haussler MR, Whitfield GK, Kaneko I, et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int. 2013;92(2):77–98.

    Article  CAS  PubMed  Google Scholar 

  28. Saramaki A, Diermeier S, Kellner R, et al. Cyclical chromatin looping and transcription factor association on the regulatory regions of the p21 (CDKN1A) gene in response to 1alpha, 25-dihydroxyvitamin D3. J Biol Chem. 2009;284(12):8073–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim S, Yamazaki M, Zella LA, et al. Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol. 2006;26(17):6469–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giangreco AA, Nonn L. The sum of many small changes: microRNAs are specifically and potentially globally altered by vitamin D3 metabolites. J Steroid Biochem Mol Biol. 2013;136:86–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang S, Gao L, Yang Y, et al. miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 by directly targeting E2F3 in gastric cancer cells. Oncotarget. 2015;6(10):7675–85.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu X, Cheng Y, Yang J, et al. Flank sequences of miR-145/143 and their aberrant expression in vascular disease: mechanism and therapeutic application. J Am Heart Assoc. 2013;2(6):e000407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Disanto G, Sandve GK, Berlanga-Taylor AJ, et al. Vitamin D receptor binding, chromatin states and association with multiple sclerosis. Hum Mol Genet. 2012;21(16):3575–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cristobo I, Larriba MJ, de los Rios V, et al. Proteomic analysis of 1alpha,25-dihydroxyvitamin D3 action on human colon cancer cells reveals a link to splicing regulation. J Proteomics. 2011;75(2):384–97.

    Article  CAS  PubMed  Google Scholar 

  35. Lin R, Wang TT, Miller Jr WH, et al. Inhibition of F-Box protein p45(SKP2) expression and stabilization of cyclin-dependent kinase inhibitor p27(KIP1) in vitamin D analog-treated cancer cells. Endocrinology. 2003;144(3):749–53.

    Article  CAS  PubMed  Google Scholar 

  36. Arcidiacono MV, Yang J, Fernandez E, et al. The induction of C/EBPbeta contributes to vitamin D inhibition of ADAM17 expression and parathyroid hyperplasia in kidney disease. Nephrol Dial Transplant. 2015;30(3):423–33.

    Article  PubMed  Google Scholar 

  37. Haussler MR, Whitfield GK, Kaneko I, et al. The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev Endocr Metab Disord. 2012;13(1):57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Egan JB, Thompson PA, Vitanov MV, et al. Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells. Mol Carcinog. 2010;49(4):337–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. An BS, Tavera-Mendoza LE, Dimitrov V, et al. Stimulation of Sirt1-regulated FoxO protein function by the ligand-bound vitamin D receptor. Mol Cell Biol. 2010;30(20):4890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Kelly J, Uskokovic M, Lemp N, et al. Novel Gemini-vitamin D3 analog inhibits tumor cell growth and modulates the Akt/mTOR signaling pathway. J Steroid Biochem Mol Biol. 2006;100(4–5):107–16.

    Article  PubMed  CAS  Google Scholar 

  41. Wu S, Zhang YG, Lu R, et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut. 2015;64(7):1082–94.

    Article  CAS  PubMed  Google Scholar 

  42. Dusso AS, Negrea L, Gunawardhana S, et al. On the mechanisms for the selective action of vitamin D analogs. Endocrinol. 1991;128(4):1687–92.

    Article  CAS  Google Scholar 

  43. Dusso AS. Vitamin D, receptor: mechanisms for vitamin D resistance in renal failure. Kidney Int Suppl. 2003;85:S6–9.

    Article  CAS  PubMed  Google Scholar 

  44. Hoenderop JG, Chon H, Gkika D, et al. Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3-1 alpha-hydroxylase knockout mice. Kidney Int. 2004;65(2):531–9.

    Article  CAS  PubMed  Google Scholar 

  45. Lou YR, Molnar F, Perakyla M, et al. 25-Hydroxyvitamin D(3) is an agonistic vitamin D receptor ligand. J Steroid Biochem Mol Biol. 2010;118(3):162–70.

    Article  CAS  PubMed  Google Scholar 

  46. Munetsuna E, Nakabayashi S, Kawanami R, et al. Mechanism of the anti-proliferative action of 25-hydroxy-19-nor-vitamin D(3) in human prostate cells. J Mol Endocrinol. 2011;47(2):209–18.

    Article  CAS  PubMed  Google Scholar 

  47. Slatopolsky E, Brown A, Dusso A. Role of phosphorus in the pathogenesis of secondary hyperparathyroidism. Am J Kidney Dis. 2001;37(1 Suppl 2):S54–7.

    Article  CAS  PubMed  Google Scholar 

  48. Brown AJ, Zhong M, Finch J, et al. Rat calcium-sensing receptor is regulated by vitamin D but not by calcium. Am J Physiol. 1996;270(3 Pt 2):F454–60.

    CAS  PubMed  Google Scholar 

  49. Kifor O, Moore Jr FD, Wang P, et al. Reduced immunostaining for the extracellular Ca2 + -sensing receptor in primary and uremic secondary hyperparathyroidism. J Clin Endocrinol Metab. 1996;81(4):1598–606.

    CAS  PubMed  Google Scholar 

  50. Canaff L, Hendy GN. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem. 2002;277(33):30337–50.

    Article  CAS  PubMed  Google Scholar 

  51. Canalejo R, Canalejo A, Martinez-Moreno JM, et al. FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephro. 2010;21(7):1125–35.

    Article  CAS  Google Scholar 

  52. Slatopolsky E, Finch J, Denda M, et al. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest. 1996;97(11):2534–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gogusev J, Duchambon P, Stoermann-Chopard C, et al. De novo expression of transforming growth factor-alpha in parathyroid gland tissue of patients with primary or secondary uraemic hyperparathyroidism. Nephrol Dial Transplant. 1996;11(11):2155–62.

    Article  CAS  PubMed  Google Scholar 

  54. Arcidiacono MV, Sato T, Alvarez-Hernandez D, et al. EGFR activation increases parathyroid hyperplasia and calcitriol resistance in kidney disease. J Am Soc Nephrol. 2008;19(2):310–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arcidiacono MV, Cozzolino M, Spiegel N, et al. Activator protein 2{alpha} mediates parathyroid TGF-{alpha} self-induction in secondary hyperparathyroidism. J Am Soc Nephrol. 2008;19:1919–28. doi:10.1681/ASN.2007111216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zahnow CA, Cardiff RD, Laucirica R, et al. A role for CCAAT/enhancer binding protein beta-liver-enriched inhibitory protein in mammary epithelial cell proliferation. Cancer Res. 2001;61(1):261–9.

    CAS  PubMed  Google Scholar 

  57. Arcidiacono MV, Yang J, Fernandez E, et al. Parathyroid-specific epidermal growth factor-receptor inactivation prevents uremia-induced parathyroid hyperplasia in mice. Nephrol Dial Transplant. 2015;30(3):434–40.

    Article  PubMed  Google Scholar 

  58. Zhang Q, Qiu J, Li H, et al. Cyclooxygenase 2 promotes parathyroid hyperplasia in ESRD. J Am Soc Nephrol. 2011;22(4):664–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Finetti F, Terzuoli E, Giachetti A, et al. mPGES-1 in prostate cancer controls stemness and amplifies epidermal growth factor receptor-driven oncogenicity. Endocr Relat Cancer. 2015;22(4):665–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moreno J, Krishnan AV, Swami S, et al. Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells. Cancer Res. 2005;65(17):7917–25.

    CAS  PubMed  Google Scholar 

  61. Thill M, Becker S, Fischer D, et al. Expression of prostaglandin metabolising enzymes COX-2 and 15-PGDH and VDR in human granulosa cells. Anticancer Res. 2009;29(9):3611–18.

    CAS  PubMed  Google Scholar 

  62. Popli P, Sirohi VK, Manohar M, et al. Regulation of cyclooxygenase-2 expression in rat oviductal epithelial cells: evidence for involvement of GPR30/Src kinase-mediated EGFR signaling. J Steroid Biochem Mol Biol. 2015;154:130–41.

    Article  CAS  PubMed  Google Scholar 

  63. Cozzolino M, Lu Y, Finch J, et al. p21WAF1 and TGF-alpha mediate parathyroid growth arrest by vitamin D and high calcium. Kidney Int. 2001;60(6):2109–17.

    Article  CAS  PubMed  Google Scholar 

  64. Cordero JB, Cozzolino M, Lu Y, et al. 1,25-Dihydroxyvitamin D down-regulates cell membrane growth- and nuclear growth-promoting signals by the epidermal growth factor receptor. J Biol Chem. 2002;277(41):38965–71.

    Article  CAS  PubMed  Google Scholar 

  65. Volovelsky O, Cohen G, Kenig A, et al. Phosphorylation of ribosomal protein S6 mediates mammalian target of rapamycin complex 1-induced parathyroid cell proliferation in secondary hyperparathyroidism. J Am Soc Nephrol. 2015;27(4):1091–101.

    Article  PubMed  Google Scholar 

  66. Fernandez-Martin JL, Martinez-Camblor P, Dionisi MP, et al. Improvement of mineral and bone metabolism markers is associated with better survival in haemodialysis patients: the COSMOS study. Nephrol Dial Transplant. 2015;30(9):1542–51.

    Article  PubMed  Google Scholar 

  67. Cejka D, Herberth J, Branscum AJ, et al. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol. 2011;6(4):877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li YC, Amling M, Pirro AE, et al. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology. 1998;139(10):4391–6.

    CAS  PubMed  Google Scholar 

  69. Panda DK, Miao D, Bolivar I, et al. Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem. 2004;279(16):16754–66.

    Article  CAS  PubMed  Google Scholar 

  70. Goltzman D. Use of genetically modified mice to examine the skeletal anabolic activity of vitamin D. J Steroid Biochem Mol Biol. 2007;103(3–5):587–91.

    Article  CAS  PubMed  Google Scholar 

  71. Nakane M, Fey TA, Dixon DB, et al. Differential effects of Vitamin D analogs on bone formation and resorption. J Steroid Biochem Mol Biol. 2006;98(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  72. Slatopolsky E, Cozzolino M, Lu Y, et al. Efficacy of 19-Nor-1,25-(OH)2D2 in the prevention and treatment of hyperparathyroid bone disease in experimental uremia. Kidney Int. 2003;63(6):2020–7.

    Article  CAS  PubMed  Google Scholar 

  73. Oury F, Sumara G, Sumara O, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144(5):796–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gardiner EM, Baldock PA, Thomas GP, et al. Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J. 2000;14(13):1908–16.

    Article  CAS  PubMed  Google Scholar 

  75. Wiese RJ, Uhland-Smith A, Ross TK, et al. Up-regulation of the vitamin D receptor in response to 1,25-dihydroxyvitamin D3 results from ligand-induced stabilization. J Biol Chem. 1992;267(28):20082–6.

    CAS  PubMed  Google Scholar 

  76. Evenepoel P, D’Haese P, Brandenburg V. Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int. 2015;88(2):235–40.

    Article  CAS  PubMed  Google Scholar 

  77. Sabbagh Y, Graciolli FG, O’Brien S, et al. Repression of osteocyte Wnt/beta-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012;27(8):1757–72.

    Article  CAS  PubMed  Google Scholar 

  78. Liu S, Song W, Boulanger JH, et al. Role of TGF-beta in a mouse model of high turnover renal osteodystrophy. J Bone Miner Res. 2014;29(5):1141–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carrillo-López N, Panizo S, Alonso-Montes C, et al. Fgf23 induction of Dkk1 inhibits the osteoblastic Wnt pathway and contributes to bone loss in CKD-MBD. Kidney Int. 2016;90(1):77–89.

    Article  PubMed  CAS  Google Scholar 

  80. Ding N, Yu RT, Subramaniam N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013;153(3):601–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. He W, Kang YS, Dai C, et al. Blockade of Wnt/beta-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J Am Soc Nephrol. 2011;22(1):90–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Al-Aly Z. Arterial calcification: a tumor necrosis factor-alpha mediated vascular Wnt-opathy. Transl Res. 2008;151(5):233–9.

    Article  CAS  PubMed  Google Scholar 

  83. Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kurosu H, Kuro-o M. The Klotho gene family and the endocrine fibroblast growth factors. Curr Opin Nephrol Hypertens. 2008;17(4):368–72.

    Article  CAS  PubMed  Google Scholar 

  85. Razzaque MS, Lanske B. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J Endocrinol. 2007;194(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yoshida T, Fujimori T, Nabeshima Y. Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology. 2002;143(2):683–9.

    CAS  PubMed  Google Scholar 

  87. Hesse M, Frohlich LF, Zeitz U, et al. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol. 2007;26(2):75–84.

    Article  CAS  PubMed  Google Scholar 

  88. Renkema KY, Alexander RT, Bindels RJ, et al. Calcium and phosphate homeostasis: concerted interplay of new regulators. Ann Med. 2008;40(2):82–91.

    Article  CAS  PubMed  Google Scholar 

  89. Perwad F, Azam N, Zhang MY, et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology. 2005;146(12):5358–64.

    Article  CAS  PubMed  Google Scholar 

  90. Dusso A, Lopez-Hilker S, Rapp N, et al. Extra-renal production of calcitriol in chronic renal failure. Kidney Int. 1988;34(3):368–75.

    Article  CAS  PubMed  Google Scholar 

  91. Krajisnik T, Bjorklund P, Marsell R, et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol. 2007;195(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  92. Dai B, David V, Alshayeb HM, et al. Assessment of 24,25(OH)2D levels does not support FGF23-mediated catabolism of vitamin D metabolites. Kidney Int. 2012;82(10):1061–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bosworth CR, Levin G, Robinson-Cohen C, et al. The serum 24,25-dihydroxyvitamin D concentration, a marker of vitamin D catabolism, is reduced in chronic kidney disease. Kidney Int. 2012;82(6):693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu X, Sabbagh Y, Davis SI, et al. Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone. 2005;36(6):971–7.

    Article  CAS  PubMed  Google Scholar 

  95. Ferrari SL, Bonjour JP, Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab. 2005;90(3):1519–24.

    Article  CAS  PubMed  Google Scholar 

  96. Burnett SM, Gunawardene SC, Bringhurst FR, et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96.

    Article  CAS  PubMed  Google Scholar 

  97. Quinn SJ, Thomsen AR, Pang JL, et al. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol Endocrinol Metab. 2013;304(3):E310–20.

    Article  CAS  PubMed  Google Scholar 

  98. Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15.

    Article  CAS  PubMed  Google Scholar 

  99. Miedlich SU, Zhu ED, Sabbagh Y, et al. The receptor-dependent actions of 1,25-dihydroxyvitamin D are required for normal growth plate maturation in NPt2a knockout mice. Endocrinology. 2010;151(10):4607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.

    Article  CAS  PubMed  Google Scholar 

  101. Forster RE, Jurutka PW, Hsieh JC, et al. Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun. 2011;414(3):557–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. St-Arnaud R, Arabian A, Travers R, et al. Deficient mineralization of intramembranous bone in vitamin D-24- hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 2000;141(7):2658–66.

    CAS  PubMed  Google Scholar 

  103. Jacobs TP, Kaufman M, Jones G, et al. A lifetime of hypercalcemia and hypercalciuria, finally explained. J Clin Endocrinol Metab. 2014;99(3):708–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Schlingmann KP, Kaufmann M, Weber S, et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med. 2011;365(5):410–21.

    Article  CAS  PubMed  Google Scholar 

  105. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309(5742):1829–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li SA, Watanabe M, Yamada H, et al. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct. 2004;29(4):91–9.

    Article  CAS  PubMed  Google Scholar 

  107. Craver L, Dusso A, Martinez-Alonso M, et al. A low fractional excretion of Phosphate/Fgf23 ratio is associated with severe abdominal Aortic calcification in stage 3 and 4 kidney disease patients. BMC Nephrol. 2013;14:221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Imura A, Iwano A, Tohyama O, et al. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett. 2004;565(1-3):143–7.

    Article  CAS  PubMed  Google Scholar 

  109. Hu MC, Shi M, Zhang J, et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mitani H, Ishizaka N, Aizawa T, et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension. 2002;39(4):838–43.

    Article  CAS  PubMed  Google Scholar 

  111. Hu MC, Shi M, Cho HJ, et al. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. J Am Soc Nephrol. 2015;26(6):1290–302.

    Article  CAS  PubMed  Google Scholar 

  112. Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22(1):124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hu MC, Shi M, Zhang J, et al. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int. 2010;78(12):1240–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Izquierdo MC, Perez-Gomez MV, Sanchez-Nino MD, et al. Klotho, phosphate and inflammation/ageing in chronic kidney disease. Nephrol Dial Transplant. 2012;27 Suppl 4:iv6–10.

    Article  CAS  PubMed  Google Scholar 

  115. Hu MC, Shi M, Zhang J, et al. Renal production, uptake, and handling of circulating alphaKlotho. J Am Soc Nephrol. 2016;27(1):79–90.

    Article  PubMed  Google Scholar 

  116. Huang CL. Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney Int. 2010;77(10):855–60.

    Article  PubMed  Google Scholar 

  117. Cha SK, Hu MC, Kurosu H, et al. Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. Mol Pharmacol. 2009;76(1):38–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chang Q, Hoefs S, van der Kemp AW, et al. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005;310(5747):490–3.

    Article  CAS  PubMed  Google Scholar 

  119. Alexander RT, Woudenberg-Vrenken TE, Buurman J, et al. Klotho prevents renal calcium loss. J Am Soc Nephrol. 2009;20(11):2371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tsujikawa H, Kurotaki Y, Fujimori T, et al. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol. 2003;17(12):2393–403.

    Article  CAS  PubMed  Google Scholar 

  121. Li YC, Kong J, Wei M, et al. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110(2):229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang Z, Sun L, Wang Y, et al. Renoprotective role of the vitamin D receptor in diabetic nephropathy. Kidney Int. 2008;73(2):163–71.

    Article  CAS  PubMed  Google Scholar 

  123. Lautrette A, Li S, Alili R, et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med. 2005;11(8):867–74.

    Article  CAS  PubMed  Google Scholar 

  124. Melenhorst WB, Visser L, Timmer A, et al. ADAM17 upregulation in human renal disease: a role in modulating TGF-{alpha} availability. Am J Physiol Renal Physiol. 2009;297(3):F781–90. doi:10.1152/ajprenal.90610.2008.

    Article  CAS  PubMed  Google Scholar 

  125. Mizobuchi M, Morrissey J, Finch JL, et al. Combination therapy with an Angiotensin-converting enzyme inhibitor and a vitamin d analog suppresses the progression of renal insufficiency in uremic rats. J Am Soc Nephrol. 2007;18(6):1796–806.

    Article  CAS  PubMed  Google Scholar 

  126. Charbonneau M, Harper K, Grondin F, et al. Hypoxia-inducible factor mediates hypoxic and tumor necrosis factor alpha-induced increases in tumor necrosis factor-alpha converting enzyme/ADAM17 expression by synovial cells. J Biol Chem. 2007;282(46):33714–24.

    Article  CAS  PubMed  Google Scholar 

  127. Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29(6):726–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Warren DT, Shanahan CM. Defective DNA-damage repair induced by nuclear lamina dysfunction is a key mediator of smooth muscle cell aging. Biochem Soc Trans. 2011;39(6):1780–5.

    Article  CAS  PubMed  Google Scholar 

  129. Gonzalez-Suarez I, Redwood AB, Grotsky DA, et al. A new pathway that regulates 53BP1 stability implicates cathepsin L and vitamin D in DNA repair. EMBO J. 2011;30(16):3383–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Campbell MJ, Gombart AF, Kwok SH, et al. The anti-proliferative effects of 1alpha,25(OH)2D3 on breast and prostate cancer cells are associated with induction of BRCA1 gene expression. Oncogene. 2000;19(44):5091–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Plan Estatal de I+D+i 2013–2016, Instituto de Salud Carlos III (ISCIII)-Fondo Europeo de Desarrollo Regional (FEDER) (PI14/01452), Plan de Ciencia, Tecnología e Innovación 2013–2017 del Principado de Asturias (GRUPIN14-028), Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología (FICYT), Instituto Reina Sofía de Investigación Nefrológica, Fundación Renal Íñigo Álvarez de Toledo, Red de Investigación Renal-RedInRen from ISCIII (RD06/0016/1013, RD12/0021/1023), and by Sociedad Asturiana Fomento Investigaciones Metabólicas (SAFIM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana S. Dusso PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dusso, A.S. (2016). Molecular Biology of Vitamin D: Genomic and Nongenomic Actions of Vitamin D in Chronic Kidney Disease. In: Ureña Torres, P., Cozzolino, M., Vervloet, M. (eds) Vitamin D in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-32507-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32507-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32505-7

  • Online ISBN: 978-3-319-32507-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics