Skip to main content

Aerial Warfare: Have Bats and Moths Co-evolved?

  • Chapter
  • First Online:
Predator–Prey Interactions: Co-evolution between Bats and Their Prey

Part of the book series: SpringerBriefs in Animal Sciences ((BRIEFSANIMAL))

Abstract

The interaction between bats and moths has been cited as an example of co-evolution. However, this is dependent on how well the diverse behavioural responses to prey detection and predator avoidance by bats and moths, respectively, satisfy the two major characteristics of co-evolution, specificity, and reciprocity . In general, co-evolution is an interaction between two species. Therefore, an interaction between multiple species of two orders as in the case of insects and bats may be a case of diffuse co-evolution . There is much evidence that moth anti-bat defences have evolved in direct response to bats. Such evidence includes the evolutionary origin of moth audition after bat echolocation, the close association between between moth hearing sensitivity and bat echolocation frequencies, the degeneration of hearing in moths that are no longer exposed to bat predation and the production of ultrasonic clicks by moths in direct response to bat echolocation. In contrast, evidence for reciprocity and specificity in the evolution of bat traits is confounded by the fact that these traits could also have evolved as adaptation for particular habitats and tasks. However, these requirements might be met by stealth echolocation, especially where these involve evolutionary trade-offs . For example, some bats use calls of low-intensity or low-frequency, sacrificing detection distance and the ability to detect small insects, respectively, that allow them to detect the moths before the moths detect them. Presumably, the decrease in detection distanced and the detectability is offset by an increased ability to catch eared/large moths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya L, McNeil JN (1998) Predation risk and mating behavior: the responses of moths to bat-like ultrasound. Behav Ecol 9(6):552–558

    Article  Google Scholar 

  • Bogdanowicz W, Fenton M, Daleszczyk K (1999) The relationships between echolocation calls, morphology and diet in insectivorous bats. J Zool 247(03):381–393

    Article  Google Scholar 

  • Cardone B, Fullard JH (1988) Auditory characteristics and sexual dimorphism in the gypsy-moth. Physiol Entomol 13(1):9–14

    Article  Google Scholar 

  • Conner WE (1999) Un chant d’appel amoureux: acoustic communication in moths. J Exp Biol 202:1711–1723

    PubMed  Google Scholar 

  • Conner WE, Corcoran AJ (2012) Sound strategies: the 65-million-year-old battle between bats and insects. In: Berenbaum MR (ed) Ann Rev Entomol, vol 57. Annual Reviews, Palo Alto, pp 21–39

    Google Scholar 

  • Corcoran AJ, Wagner RD, Conner WE (2013) Optimal predator risk assessment by the sonar-jamming arctiine moth Bertholdia trigona. PLoS ONE 8(5):13

    Article  Google Scholar 

  • Davis DR (1998) A world classification of the Harmacloninae, a new subfamily of Tineidae (Lepidoptera: Tineoidea). Smithson Contrib Zool 597:1–57

    Article  Google Scholar 

  • Dool SE, Puechmaille SJ, Foley NM, Allegrini B, Bastian A, Mutumi GL, Maluleke TG, Odendaal LJ, Teeling EC, Jacobs DS (2016) Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: lessons from horseshoe bats (Rhinolophidae: Chiroptera). Mol Phylogenet Evol 97:196–212

    Article  CAS  PubMed  Google Scholar 

  • Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22(9):1869–1886

    Article  CAS  PubMed  Google Scholar 

  • Faure PA, Fullard JH, Barclay RMR (1990) The response of tympanate moths to the echolocation calls of a substrate gleaning bat, Myotis evotis. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol 166(6):843–849

    Article  Google Scholar 

  • Faure PA, Fullard JH, Dawson JW (1993) The gleaning attacks of the northern long-eared bat, Myotis septentrionalis, are relatively inaudible to moths. J Exp Biol 178:173–189

    CAS  PubMed  Google Scholar 

  • Fenton MB, Fullard JH (1979) The influence of moth hearing on bat echolocation strategies. J Comp Physiol 132(1):77–86

    Article  Google Scholar 

  • Fenton MB, Audet D, Obrist MK, Rydell J (1995) Signal strength, timing, and self-deafening - the evolution of echolocation in bats. Paleobiology 21(2):229–242

    Article  Google Scholar 

  • Fenton MB, Bell GP (1981) Recognition of species of insectivorous bats by their echolocation calls. J Mammal 62(2):233–243

    Google Scholar 

  • Fenton MB, Taylor PJ, Jacobs DS, Richardson EJ, Bernard E, Bouchard S, Debaeremaeker KR, ter Hofstede H, Hollis L, Lausen CL, Lister JS, Rambaldini D, Ratcliffe JM, Reddy E (2002) Researching little-known species: the African bat Otomops martiensseni (Chiroptera: Molossidae). Biodivers Conserv 11(9):1583–1606

    Article  Google Scholar 

  • Foley NM, Thong VD, Soisook P, Goodman SM, Armstrong KN, Jacobs DS, Puechmaille SJ, Teeling EC (2014) How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol Biol Evol 32(2):313–333

    Google Scholar 

  • Fullard JH (1982) Echolocation assemblages and their effects on moth auditory systems. Can J Zool 60(11):2572–2576

    Article  Google Scholar 

  • Fullard JH (1987) Sensory ecology and neuroethology of moths and bats: interaction in a global perspective. Cambridge University Press, Cambridge

    Google Scholar 

  • Fullard JH (1988) The tuning of moth ears. Experientia 44(5):423–428

    Article  Google Scholar 

  • Fullard JH (1992) The neuroethology of sound production in tiger moths (Lepidoptera, arctiidae) Rhythmicity and central control. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol 170(5):575–588

    Article  Google Scholar 

  • Fullard JH (1994) Auditory changes in noctuid moths endemic to a bat-free habitat. J Evol Biol 7(4):435–445

    Article  Google Scholar 

  • Fullard JH, Dawson JW (1997) The echolocation calls of the spotted bat Euderma maculatum are relatively inaudible to moths. J Exp Biol 200(1):129–137

    CAS  PubMed  Google Scholar 

  • Fullard JH, Thomas DW (1981) Detection of certain African, insectivorous bats by sympatric, tympanate moths. J Comp Physiol 143(3):363–368

    Article  Google Scholar 

  • Fullard JH, Dawson JW, Otero LD, Surlykke A (1997) Bat-deafness in day-flying moths (Lepidoptera, Notodontidae, Dioptinae). J Comp Physiol A: Neuroethol Sens Neural Behav Physiol 181(5):477–483

    Article  CAS  Google Scholar 

  • Fullard JH, Ratcliffe JM, Soutar AR (2004) Extinction of the acoustic startle response in moths endemic to a bat-free habitat. J Evol Biol 17(4):856–861

    Article  CAS  PubMed  Google Scholar 

  • Fullard JH, Ratcliffe JM, Christie CG (2007) Acoustic feature recognition in the dogbane tiger moth, Cycnia tenera. J Exp Biol 210(14):2481–2488

    Article  PubMed  Google Scholar 

  • Fullard JH, Jackson ME, Jacobs DS, Pavey CR, Burwell CJ (2008) Surviving cave bats: auditory and behavioural defences in the Australian noctuid moth, Speiredonia spectans. J Exp Biol 211:3808–3815. doi:10.1242/jeb.023978

    Article  PubMed  Google Scholar 

  • Futuyma DJ, Slatkin M (1983) Introduction. In: Coevolution. Sunderland. Sinauer Associates Inc, Massachusetts

    Google Scholar 

  • Goerlitz HR, ter Hofstede HM, Zeale MR, Jones G, Holderied MW (2010a) An aerial-hawking bat uses stealth echolocation to counter moth hearing. Curr Biol 20(17):1568–1572

    Article  CAS  PubMed  Google Scholar 

  • Goerlitz HR, Geberl C, Wiegrebe L (2010b) Sonar detection of jittering real targets in a free-flying bat. J Acoust Soc Am 128(3):1467–1475

    Article  PubMed  Google Scholar 

  • Göpfert MC, Wasserthal LT (1999) Hearing with the mouthparts: behavioural responses and the structural basis of ultrasound perception in acherontiine hawkmoths. J Exp Biol 202(8):909–918

    PubMed  Google Scholar 

  • Greenfield MD (2016) Evolution of acoustic communication in insects. In GS Pollack, AC Mason, AN Popper, RR Fay (eds) Insect hearing. Springer Handbook of Auditory Research, vol 55, pp 17–47

    Google Scholar 

  • Griffin DR (1958) Listening in the dark: the acoustic orientation of bats and men. Yale University Press, New Haven

    Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the Insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Heller K-G, von Helversen D (1989) Resource partitioning of sonar frequency bands in rhinolophoid bats. Oecologia 80(2):178–186

    Article  Google Scholar 

  • Hoy RR, Robert D (1996) Tympanal hearing in insects. Annu Rev Entomol 41(1):433–450

    Article  CAS  PubMed  Google Scholar 

  • Jacobs DS (2000) Community level support for the allotonic frequency hypothesis. Acta Chiropterol 2(2):197–207

    Google Scholar 

  • Jacobs DS (2016) Evolution’s chimera: bats and the marvel of evolutionary adaptation. University of Cape Town Press, Cape Town

    Google Scholar 

  • Jacobs DS, Ratcliffe JM, Fullard JH (2008) Beware of bats, beware of birds: the auditory responses of eared moths to bat and bird predation. Behav Ecol 19(6):1333–1342

    Article  Google Scholar 

  • Jones G (1992) Bats vs moths: studies on the diets of rhinolophid and hipposiderid bats support the allotonic frequency hypothesis. Prague stud Mammal 87–92

    Google Scholar 

  • Jones G (1996) Does echolocation constrain the evolution of body size in bats? Symp Zool Soc Lond 69:111–128

    Google Scholar 

  • Jones G (1999) Scaling of echolocation call parameters in bats. J Exp Biol 202:3359–3367

    CAS  PubMed  Google Scholar 

  • Jones G, Rayner JM (1989) Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behav Ecol Sociobiol 25(3):183–191

    Article  Google Scholar 

  • Jung K, Kalko EK, von Helversen O (2007) Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation. J Zool 272(2):125–137

    Article  Google Scholar 

  • Kristensen NP (2012) Molecular phylogenies, morphological homologies and the evolution of moth “ears”. Syst Entomol 37:237–239

    Article  Google Scholar 

  • Miller L, Surlykke A (2001) How some insects detect and avoid being eaten by bats. Bioscience 51(7):570–581

    Google Scholar 

  • Mora EC, Macías S, Hechavarría J, Vater M, Kössl M (2013) Evolution of the heteroharmonic strategy for target-range computation in the echolocation of Mormoopidae. Front Physiol 4

    Google Scholar 

  • Mora EC, Fernández Y, Hechavarría J, Pérez M (2014) Tone-deaf ears in moths may limit the acoustic detection of two-tone bats. Brain Behav Evol 83(4):275–285

    Article  PubMed  Google Scholar 

  • Nakano R, Ishikawa Y, Tatsuki S, Skals N, Surlykke A, Takanahi T (2009) Private ultrasonic whispering in moths. Commun Integr Biol 2(2):123–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuweiler G (1980) How bats detect flying insects. Phys Today 33(8):34–40

    Article  Google Scholar 

  • Neuweiler G (1989) Foraging ecology and audition in echolocating bats. Trends Ecol Evol 4(6):160–166

    Article  CAS  PubMed  Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Trans Royal Soc, Lond B 316:335–427

    Article  Google Scholar 

  • Novick A (1977) Acoustic orientation. In WA Wimsatt (ed) Biology of bats. Academic Press, New York and London, vol 3, pp 73–287

    Google Scholar 

  • Painter ML, Chambers CL, Siders M, Doucett RR, Whitaker JO Jr, Phillips DL (2009) Diet of spotted bats (Euderma maculatum) in Arizona as indicated by fecal analysis and stable isotopes. Can J Zool 87:865–875

    Google Scholar 

  • Pavey CR, Burwell CJ (1998) Bat predation on eared moths: a test of the allotonic frequency hypothesis. Oikos 143–51

    Google Scholar 

  • Ratcliffe JM (2009) 11 predator-prey interaction in an auditory world. In: Dukas R, Ratcliffe J (eds) Cognitive ecology II. University of Chicago Press, Chicago, pp 201–228

    Chapter  Google Scholar 

  • Ratcliffe JM, Fullard JH (2005) The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach. J Exp Biol 208(24):4689–4698

    Article  PubMed  Google Scholar 

  • Regier JC, Mitter C, Zwick A, Bazinet AL, Cummings MP et al (2013) A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS ONE. doi:10.1371/journal.pone.0058568

    Google Scholar 

  • Roeder KD (1964) Aspects of the noctuid tympanic nerve response having significance in the avoidance of bats. J Insect Physiol 10(4):529–546

    Article  Google Scholar 

  • Roeder KD (1967) Turning tendency of moths exposed to ultrasound while in stationary flight. J Insect Physiol 13(6):873–888

    Article  Google Scholar 

  • Roeder KD, Treat AE (1957) Ultrasonic reception by the tympanic organ of noctuid moths. J Exp Zool 134(1):127–157

    Article  CAS  PubMed  Google Scholar 

  • Rothstein SI (1990) A model system for coevolution: Avian brood parasitism. Annu Rev Ecol Syst 21:481–508

    Article  Google Scholar 

  • Russo D, Jones G, Arlettaz R (2007) Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M blythii. J Exp Biol 210(1):166–176

    Article  PubMed  Google Scholar 

  • Rydell J, Yalden DW (1997) The diets of two high-flying bats from Africa. J Zool 242:69–76

    Article  Google Scholar 

  • Rydell J, Jones G, Waters D (1995) Echolocating bats and hearing moths: who are the winners? Oikos, 419–424

    Google Scholar 

  • Rydell J, Kaerma S, Hedelin H, Skals N (2003) Evasive response to ultrasound by the crepuscular butterfly Manataria maculata. Naturwissenschaften 90(2):80–83

    CAS  PubMed  Google Scholar 

  • Schnitzler H-U, Flieger E (1983) Detection of oscillating target movements by echolocation in the Greater horseshoe bat. J Comp Physiol 153(3):385–391

    Article  Google Scholar 

  • Schnitzler H-U, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51(7):557–569

    Article  Google Scholar 

  • Schoeman CM, Jacobs DS (2003) Support for the allotonic frequency hypothesis in an insectivorous bat community. Oecologia 134(1):154–162

    Article  PubMed  Google Scholar 

  • Schoeman MC, Jacobs DS (2008) The relative influence of competition and prey defenses on the phenotypic structure of insectivorous bat ensembles in southern Africa. PLoS ONE 3(11):e3715

    Article  PubMed Central  Google Scholar 

  • Schoeman MC, Jacobs DS (2011) The relative influence of competition and prey defences on the trophic structure of animalivorous bat ensembles. Oecologia 166(2):493–506

    Google Scholar 

  • Schuller G (1984) Natural ultrasonic echoes from wing beating insects are encoded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol 155(1):121–128

    Article  Google Scholar 

  • Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008) Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. 451:818–822. doi:10.1038/nature06549

    CAS  Google Scholar 

  • Spangler HG (1988) Moth hearing, defense, and communication. Annu Rev Entomol 33:59–81

    Article  Google Scholar 

  • Stoffberg S, Jacobs DS, Matthee CA (2011) The divergence of echolocation frequency in horseshoe bats: moth hearing, body size or habitat? J Mammal Evol 18(2):117–129

    Article  Google Scholar 

  • Strauß J, Stumpner A (2015) Selective forces on origin, adaptation and reduction of tympanal ears in insects. J Comp Physiol A: Neuroethol Sens Neural Behav Physiol 201(1):155–169

    Article  Google Scholar 

  • Surlykke A (1988) Interaction between echolocating bats and their prey. Animal sonar. Springer, Berlin, pp 551–66

    Google Scholar 

  • Surlykke A, Filskov M (1997) Hearing in Geometrid moths. Naturwissenschaften 84:356–359

    Article  CAS  Google Scholar 

  • Surlykke A, Skals N, Rydell J, Svensson M (1998) Sonic hearing in a diurnal geometrid moth, Archiearis parthenias, temporally isolated from bats. Naturwissenschaften 85(1):36–37

    Article  CAS  Google Scholar 

  • Teeling EC (2009) Hear, hear: the convergent evolution of echolocation in bats? Trends Ecol Evol 24(7):351–354

    Article  PubMed  Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307(5709):580–584

    Article  CAS  PubMed  Google Scholar 

  • ter Hofstede, HM, Ratcliffe JM (2016) Evolutionary escalation: the bat–moth arms race. J Exp Biol 219:1589–1602 doi:10.1242/jeb.086686

    Google Scholar 

  • Vaughan N (1997) The diets of British bats (Chiroptera). Mammal Rev 27(2):77–94

    Article  Google Scholar 

  • Von Der Emde G, Schnitzler H-U (1986) Fluttering target detection in hipposiderid bats. J Compar Physiol A: Neuroethol Sens Neural Behav Physiol 159(6):765–772

    Article  Google Scholar 

  • Waters DA (2003) Bats and moths: what is there left to learn? Physiol Entomol 28(4):237–250

    Article  Google Scholar 

  • Waters D, Jones G (1996) The peripheral auditory characteristics of noctuid moths: responses to the search-phase echolocation calls of bats. J Exp Biol 199(4):847–856

    CAS  PubMed  Google Scholar 

  • Woodsworth G, Bell G, Fenton M (1981) Observations of the echolocation, feeding behaviour, and habitat use of Euderma maculatum (Chiroptera: Vespertilionidae) in southcentral British Columbia. Can J Zool 59(6):1099–1102

    Article  Google Scholar 

  • Yack JE (2004) The structure and function of auditory chordotonal organs in insects. Microsc Res Tech 63(6):315–337

    Article  PubMed  Google Scholar 

  • Yack JE, Fullard JH (2000) Ultrasonic hearing in nocturnal butterflies. Nature 403(6767):265–266

    Article  CAS  PubMed  Google Scholar 

  • Yack JE, Kalko EK, Surlykke A (2007) Neuroethology of ultrasonic hearing in nocturnal butterflies (Hedyloidea). J Comp Physiol A 193(6):577–590

    Article  Google Scholar 

  • Yamamoto S, Sota T (2007) Phylogeny of the Geometridae and the evolution of winter moths inferred from a simultaneous analysis of mitochondrial and nuclear genes. Mol Phylogenet Evol 44(2):711–723

    Google Scholar 

  • Zahiri R, Kitching IJ, Lafontaine JD, Mutanen M, Kaila L, Holloway JD, Wahlberg N (2011) A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). Zool Scr 40:158–173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Steve Jacobs .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Jacobs, D.S., Bastian, A. (2016). Aerial Warfare: Have Bats and Moths Co-evolved?. In: Predator–Prey Interactions: Co-evolution between Bats and Their Prey. SpringerBriefs in Animal Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-32492-0_5

Download citation

Publish with us

Policies and ethics