Skip to main content

Bat Echolocation: Adaptations for Prey Detection and Capture

  • Chapter
  • First Online:
Predator–Prey Interactions: Co-evolution between Bats and Their Prey

Part of the book series: SpringerBriefs in Animal Sciences ((BRIEFSANIMAL))

Abstract

Bats have evolved a plethora of adaptations in response to the challenges of their diverse habitats and the physics of sound propagation . Such adaptations can confound investigations of adaptations that arise in response to prey. Here, we review the adaptations in the echolocation and foraging behaviour of bats. Bats use a variety of foraging modes including aerial hawking and gleaning . The main challenge to bats echolocating in clutter is increased resolution to detect small objects, be they insects or twigs, and overcoming the masking effects that result from the overlap of echoes from prey and the background. Low-duty-cycle echolocating bats that aerial hawk in clutter have evolved short, frequency-modulated calls with high bandwidth that increase resolution and minimizes masking effects . Bats that glean prey from the vegetation have similar adaptations but in addition use passive listening and/or 3-D flight to ensonify substrate-bound prey from different directions. High-duty-cycle echolocating bats have evolved Doppler-shift compensation which allows the detection of acoustic glints from the flapping wings of insects. Bats that aerial hawk in the open have to search large volumes of space efficiently and use narrowband , low-frequency (for decrease atmospheric attenuation ) echolocation calls that maximize detection distance . The wings and echolocation of bats form an adaptive complex. Bats that forage in clutter where distances are short have short broad wings for slow, manoeuvrable flight. Bats that hunt in the open where detection distances are long have long narrow wings for fast, agile flight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arlettaz R, Jones G, Racey PA (2001) Effect of acoustic clutter on prey detection by bats. Nature 414(6865):742–745

    Article  CAS  PubMed  Google Scholar 

  • Bates ME, Simmons JA, Zorikov TV (2011) Bats use echo harmonic structure to distinguish their targets from background clutter. Science 333(6042):627–630

    Article  CAS  PubMed  Google Scholar 

  • Bell GP (1985) The sensory basis of prey location by the California leaf-nosed bat Macrotus californicus (Chiroptera: Phyllostomidae). Behav Ecol Sociobiol 16(4):343–347

    Article  Google Scholar 

  • Belwood JJ, Morris GK (1987) Bat predation and its influence on calling behavior in neotropical katydids. Science 238(4823):64–67

    Article  CAS  PubMed  Google Scholar 

  • Boonman A, Bumrungsri S, Yovel Y (2014) Nonecholocating fruit bats produce biosonar clicks with their wings. Curr Biol 24(24):2962–2967

    Article  CAS  PubMed  Google Scholar 

  • Chiu C, Moss CF (2007) The role of the external ear in vertical sound localization in the free flying bat, Eptesicus fuscus. J Acoust Soc Am 121(4):2227–2235

    Article  PubMed  Google Scholar 

  • Ekloef J, Jones G (2003) Use of vision in prey detection by brown long-eared bats, Plecotus auritus. Anim Behav 66:949–953

    Article  Google Scholar 

  • Faure PA, Barclay RMR (1994) Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, myotis evotis. J Comp Physiol A Neuroethology Sens Neural Behav Physiol 174(5):651–660

    CAS  Google Scholar 

  • Fawcett K, Jacobs DS, Surlykke A, Ratcliffe JM (2015) Echolocation in the bat, Rhinolophus capensis: the influence of clutter, conspecifics and prey on call design and intensity. Biol Open 4(6):693–701

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenton MB (1999) Describing the echolocation calls and behaviour of bats. Acta Chiropterologica 1(2):127–136

    Google Scholar 

  • Fenton MB, Ratcliffe JM (2014) Sensory biology: echolocation from click to call, mouth to wing. Curr Biol 24(24):4

    Article  Google Scholar 

  • Fenton MB, Jacobs DS, Richardson EJ, Taylor PJ, White E (2004) Individual signatures in the frequency-modulated sweep calls of African large-eared, free-tailed bats Otomops martiensseni (Chiroptera: Molossidae). J Zool 262:11–19

    Article  Google Scholar 

  • Fullard JH (1987) Sensory ecology and neuroethology of moths and bats: interaction in a global perspective. Cambridge University Press, Cambridge

    Google Scholar 

  • Funakoshi K, Zubaid A, Matsumura S (1995) Regular pulse emission in some megachiropteran bats. Zoolog Sci 12(4):503–505

    Article  CAS  PubMed  Google Scholar 

  • Geipel I, Jung K, Kalko EKV (2013) Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis. Proc Roy Soc Lond B Biol Sci 280(1754):7

    Article  Google Scholar 

  • Goerlitz HR, ter Hofstede HM, Zeale MRK, Jones G, Holderied MW (2010) An aerial-hawking bat uses stealth echolocation to counter moth hearing. Curr Biol 20(17):1568–1572

    Article  CAS  PubMed  Google Scholar 

  • Goudy-Trainor A, Freeman PW (2002) Call parameters and facial features in bats: a surprising failure of form following function. Acta Chiropterologica 4(1):1–16

    Article  Google Scholar 

  • Gould E (1988) Wing-clapping sounds of Eonycteris spelaea (Pteropodidae) in Malaysia. J Mammal 69(2):378–379

    Article  Google Scholar 

  • Griffin DR (1944) Echolocation by blind men, bats and radar. Science 100(2609):589–590. doi:10.1126/science.100.2609.589

    Article  CAS  PubMed  Google Scholar 

  • Griffin DR (1958) Listening in the dark: the acoustic orientation of bats and men. Yale University Press, New Haven

    Google Scholar 

  • Griffin DR, Webster FA, Michael CR (1960) The echolocation of flying insects by bats. Anim Behav 8(3):141–154

    Article  Google Scholar 

  • Halfwerk W, Dixon MM, Ottens KJ, Taylor RC, Ryan MJ, Page RA, Jones PL (2014) Risks of multimodal signaling: bat predators attend to dynamic motion in frog sexual displays. J Exp Biol 217(17):3038–3044

    Article  PubMed  Google Scholar 

  • Holland RA, Waters DA, Rayner JMV (2004) Echolocation signal structure in the megachiropteran bat Rousettus aegyptiacus Geoffroy 1810. J Exp Biol 207(25):4361–4369

    Article  PubMed  Google Scholar 

  • Jacobs DS (2000) Community level support for the allotonic frequency hypothesis. Acta Chiropterologica 2(2):197–207

    Google Scholar 

  • Jacobs DS (2016) Evolution’s chimera: bats and the marvel of evolutionary adaptation. University of Cape Town Press, Cape Town

    Google Scholar 

  • Jones PL, Page RA, Hartbauer M, Siemers BM (2011) Behavioral evidence for eavesdropping on prey song in two palearctic sibling bat species. Behav Ecol Sociobiol 65(2):333–340

    Article  Google Scholar 

  • Lawrence BD, Simmons JA (1982) Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J Acoust Soc Am 71(3):585–590

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Koselj K, Zsebok S, Siemers BM, Goerlitz HR (2013) Global warming alters sound transmission: differential impact on the prey detection ability of echolocating bats. J Roy Soc Interface/Roy Soc 11:20130961. doi:10.1098/rsif.2013.0961 PMID: 24335559

    Article  Google Scholar 

  • Matthias K, Herkta B, Barnikela G, Skidmoreb AK, Fahr J (2016) A high-resolution model of bat diversity and endemism for continental Africa. Ecol Model 320:9–28

    Article  Google Scholar 

  • Moss CF, Schnitzler H-U (1995) Behavioral studies of auditory information processing. In: Popper AN, Fay RR (eds) Hearing by bats, vol 5. Springer, New York, pp 87–145

    Chapter  Google Scholar 

  • Mutumi GL, Jacobs DS, Winker H (2016) Sensory drive mediated by climatic gradients partially explains divergence in acoustic signals in two horseshoe bat species, Rhinolophus swinnyi and Rhinolophus simulator. PLoS ONE 11(1):e0148053. doi:10.1371/journal.pone.0148053

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuweiler G (1984) Foraging, echolocation and audition in bats. Naturwissenschaften 71(9):446–455

    Article  Google Scholar 

  • Neuweiler G (1989) Foraging ecology and audition in echolocating bats. Trends Ecol Evol 4(6):160–166

    Article  CAS  PubMed  Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70(3):615–641

    CAS  PubMed  Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans Roy Soc Lond B 316:335–427

    Article  Google Scholar 

  • Novick A (1958) Orientation in paleotropical bats. II. Megachiroptera. J Exp Zool 137(3):443–461

    Article  CAS  PubMed  Google Scholar 

  • Obrist MK, Fenton MB, Eger JL, Schlegel PA (1993) What ears do for bats - a comparative-study of pinna sound pressure transformation in Chiroptera. J Exp Biol 180:119–152

    CAS  PubMed  Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573

    CAS  PubMed  Google Scholar 

  • Pedersen SC (1993) Cephalometric correlates of echolocation in the Chiroptera. J Morphol 218(1):85–98

    Article  CAS  PubMed  Google Scholar 

  • Pye JD (1993) Is fidelity futile? The ‘true’ signal is illusory, especially with ultrasound. Bioacoustics 4(4):271–286

    Article  Google Scholar 

  • Raghuram H, Gopukumar N, Sripathi K (2007) Presence of single as well as double clicks in the echolocation signals of a fruit bat, Rousettus leschenaulti (Chiroptera: Pteropodidae). Folia Zool 56(1):33–38

    Google Scholar 

  • Ratcliffe JM, Dawson JW (2003) Behavioural flexibility: the little brown bat, Myotis lucifugus, and the northern long-eared bat, M. septentrionalis, both glean and hawk prey. Anim Behav 66:847–856

    Article  Google Scholar 

  • Ratcliffe JM, Raghuram H, Marimuthu G, Fullard JH, Fenton MB (2005) Hunting in unfamiliar space: echolocation in the Indian false vampire bat, Megaderma lyra, when gleaning prey. Behav Ecol Sociobiol 58:157–164

    Article  Google Scholar 

  • Rhebergen F, Taylor RC, Ryan MJ, Page RA, Halfwerk W (2015) Multimodal cues improve prey localization under complex environmental conditions. Proc Roy Soc B Biol Sci 282(1814)

    Google Scholar 

  • Russo D, Jones G, Arlettaz R (2007) Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M blythii. J Exp Biol 210(1):166–176

    Article  PubMed  Google Scholar 

  • Ryan MJ, Tuttle MD, Rand AS (1982) Bat predation and sexual advertisement in a Neotropical Anuran. Am Nat 119(1):136–139

    Article  Google Scholar 

  • Schmidt S (1988) Discrimination of target surface structure in the echolocating bat, Megaderma lyra animal sonar. Springer, pp 507–511

    Google Scholar 

  • Schmidt S, Hanke S, Pillat J (2000) The role of echolocation in the hunting of terrestrial prey—new evidence for an underestimated strategy in the gleaning bat, Megaderma lyra. J Comp Physiol A Neuroethology Sens Neural Behav Physiol 186(10):975–988

    Article  CAS  Google Scholar 

  • Schnitzler H-U (1968) Die Ultraschall-Ortungslaute der Hufeisen fledermaeuse (Chiroptera – Rhinolophidae) in verschiedenen Orientierungssituationen. Z. Vgl. Physiol. 57:376–408

    Article  Google Scholar 

  • Schnitzler H-U, Denzinger A (2011) Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals. J Comp Physiol A Neuroethology Sens Neural Behav Physiol 197(5):541–559

    Article  Google Scholar 

  • Schnitzler H-U, Flieger E (1983) Detection of oscillating target movements by echolocation in the greater horseshoe bat. J Comp Physiol 153(3):385–391

    Article  Google Scholar 

  • Schnitzler H-U, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51(7):557–569

    Article  Google Scholar 

  • Schnitzler H-U, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocation bats. Trends Ecol Evol 18(8):386–394

    Article  Google Scholar 

  • Schoeman MC, Goodman SM (2012) Vocalizations in the Malagasy cave-dwelling fruit bat, Eidolon dupreanum: possible evidence of incipient echolocation? Acta Chiropterologica 14(2):409–416

    Article  Google Scholar 

  • Schuller G, Pollak G (1979) Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats—evidence for an acoustic fovea. J Comp Physiol 132(1):47–54

    Article  Google Scholar 

  • Schuller G, Neuweiler G, Schnitzler H-U (1971) Collicular responses to the frequency modulated final part of echolocation sounds in Rhinolophus ferrrumequinum. Zeitschrift fuer vergleichende Physiologie 74:153–155

    Article  Google Scholar 

  • Siemers BM, Swift SM (2006) Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav Ecol Sociobiol 59(3):373–380

    Article  Google Scholar 

  • Simon R, Knörnschild M, Tschapka M, Schneider A, Passauer N, Kalko EKV, von Helversen O (2014) Biosonar resolving power: echo-acoustic perception of surface structures in the submillimeter range. Front Physiol 5

    Google Scholar 

  • Surlykke A, Kalko EKV (2008) Echolocating bats cry out loud to detect their prey. PLoS ONE 3(4):10

    Article  Google Scholar 

  • Swift SM, Racey PA (2002) Gleaning as a foraging strategy in Natterer’s bat Myotis nattereri. Behav Ecol Sociobiol 52(5):408–416

    Article  Google Scholar 

  • ter Hofstede HM, Ratcliffe JM, Fullard JH (2008) The effectiveness of katydid (Neoconocephalus ensiger) song cessation as antipredator defence against the gleaning bat Myotis septentrionalis. Behav Ecol Sociobiol 63(2):217–226

    Article  Google Scholar 

  • Thies W, Kalko EKV, Schnitzler H-U (1998) The roles of echolocation and olfaction in two neotropical fruit-eating bats, Carollia perspicillata and C. castanea, feeding on piper. Behav Ecol Sociobiol 42(6):397–409

    Article  Google Scholar 

  • Tuttle MD, Ryan MJ (1981) Bat predation and the evolution of frog vocalizations in the Neotropics. Science 214(4521):677–678

    Article  CAS  PubMed  Google Scholar 

  • von Der Emde G, Menne D (1989) Discrimination of insect wingbeat-frequencies by the bat Rhinolophus ferrumequinum. J Comp Physiol A Neuroethology Sens Neural Behav Physiol 164:663–671

    Article  Google Scholar 

  • von Der Emde G, Schnitzler H-U (1990) Classification of insects by echolocating greater horseshoe bats. J Comp Physiol A Neuroethology Sens Neural Behav Physiol 167(3):423–430

    Article  Google Scholar 

  • Young AT (1981) Rayleigh scattering. Appl Opt 20(4):533–535

    Article  CAS  PubMed  Google Scholar 

  • Yovel Y, Falk B, Moss CF, Ulanovsky N (2011) Active control of acoustic field-of-view in a biosonar system. PLoS Biol 9(9):10

    Article  Google Scholar 

  • Zhuang Q, Müller R (2006) Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam. Phys Rev Lett 97(21):218701

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Steve Jacobs .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Jacobs, D.S., Bastian, A. (2016). Bat Echolocation: Adaptations for Prey Detection and Capture. In: Predator–Prey Interactions: Co-evolution between Bats and Their Prey. SpringerBriefs in Animal Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-32492-0_2

Download citation

Publish with us

Policies and ethics