Skip to main content

Dielectric Properties of Ionic Liquids at Metal Interfaces: Electrode Polarization, Characteristic Frequencies, Scaling Laws

  • Chapter
  • First Online:

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

The electrical and dielectric properties of ionic liquids measured by broadband dielectric spectroscopy are analyzed in detail, in order to determine the characteristic frequencies governing the spectral dependence of electrode polarization effects. A universal behavior is revealed: plotting the characteristic frequencies as a function of the DC-conductivity for a large variety of ionic liquids, single collapsing curves are obtained. This is due to the fact that the charge carriers present in ionic liquids have comparable molecular dimensions. Furthermore, an analytical approach is developed in order to determine, using the dielectric signature of electrode polarization effects, the dielectric properties of ionic liquids at metal interfaces. A new relaxation process taking place in the nanometric interphases formed at the contact with the measurement electrodes is reported. It is assigned to an exchange process between the interphase and the bulk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jordan A, Gathergood N (2015) Chem Soc Rev 44:8200–8237

    Article  CAS  Google Scholar 

  2. Zhao Y, Bostrom T (2015) Curr Org Chem 19:556–566

    Article  CAS  Google Scholar 

  3. Greaves TL, Drummond CJ (2015) Chem Rev 115:11379–11448

    Article  CAS  Google Scholar 

  4. Somers AE, Howlett PC, MacFarlane DR (2013) M Forsyth Lubricants 1:3–21

    Article  Google Scholar 

  5. Keskin S, Kayrak-Talay D, Akman U, Hortaçsu Ö (2007) J Supercrit Fluids 43:150–180

    Article  CAS  Google Scholar 

  6. Buszewski B, Studzinska S (2008) Chromatographia 68:1–10

    Article  CAS  Google Scholar 

  7. Marsh KN, Boxall JA, Lichtenthaler R (2004) Fluid Phase Equilib 219:93–98

    Article  CAS  Google Scholar 

  8. Zhao H, Baker GA (2015) Front Chem Sci Eng 9:262–279

    Article  CAS  Google Scholar 

  9. Hayes R, Warr GG, Atkin R (2015) Chem Rev 115:6357–6426

    Article  CAS  Google Scholar 

  10. Marrucho IM, Branco LC, Rebelo LPN (2014) Annu Rev Chem Biomol Eng 5:527–546

    Article  CAS  Google Scholar 

  11. Plechkova NV, Seddona KR (2008) Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  12. Patel R, Kumari M, Khan AB (2014) Appl Biochem Biotechnol 172:3701–3720

    Article  CAS  Google Scholar 

  13. MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA (2014) Energy Environ Sci 7:232–250

    Article  CAS  Google Scholar 

  14. Olivier-Bourbigou H, Magna L, Morvan D (2010) Appl Catal A 373:1–56

    Article  CAS  Google Scholar 

  15. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati HB (2009) Nat Mater 8:621

    Article  CAS  Google Scholar 

  16. Zakeeruddin SM, Grätzel M (2009) Adv Funct Mater 19:2187–2202

    Article  CAS  Google Scholar 

  17. Sanabria H, Miller JH (2006) Phys Rev E 74:051505

    Article  Google Scholar 

  18. Feldman Y, Nigmatullin R, Polygalov E, Texter J (1998) Phys Rev E 58:7561

    Article  CAS  Google Scholar 

  19. Barbero G, Alexe-Ionescu AL (2005) Liquid Crystals. J Phys Chem B 32:943

    CAS  Google Scholar 

  20. Becchi M, Avendano C, Strigazzi A, Barbero G (2005) J Phys Chem B 105:23444

    Article  Google Scholar 

  21. Klein RJ, Zhang S, Dou S, Jones BH, Colby RH, Runt J (2006) J Chem Phys 124:144903

    Article  Google Scholar 

  22. Macdonald JR (1953) Phys Rev 92:4

    Article  CAS  Google Scholar 

  23. Macdonald JR (2005) J Phys: Condens Matter 17:4369

    CAS  Google Scholar 

  24. Sawada A, Tarumi K, Naemura S (1999) Jpn J Appl Phys Part 1 38:1423

    Google Scholar 

  25. Coelho R, Non-Cryst J (1991) Solids 131:1136

    Google Scholar 

  26. Kohn P, Schröter K, Thurn-Albrecht T (2007) Phys Rev Lett 99:086104

    Article  Google Scholar 

  27. MacDonald JR (1953) Phys Rev 92:4

    Article  CAS  Google Scholar 

  28. Chang H, Jaffe G (1952) J Chem Phys 20:1071

    Article  CAS  Google Scholar 

  29. Bates JB, Chu YT, Stribling WT (1988) Phys Rev Lett 60:627

    Article  CAS  Google Scholar 

  30. Bordi F, Cametti C, Colby RH (2004) J Phys: Condens Matter 16:R1423

    CAS  Google Scholar 

  31. Yariv E, Frankel I (2002) Phys Rev Lett 89:266107

    Article  CAS  Google Scholar 

  32. Alam MT, Islam MM, Okajima T, Ohsaka T (2008) J Phys Chem C 112:16600

    Article  CAS  Google Scholar 

  33. Federov MV, Kornyshev AA (2007) J Phys Chem 112, 11868 (2008)

    Google Scholar 

  34. Kornyshev AA (2007) J Phys Chem 111:5545

    Article  CAS  Google Scholar 

  35. Serghei A, Tress M, Sangoro JR (2009) F. Kremer. Phys Rev B 80:184301

    Article  Google Scholar 

  36. Samet M, Levchenko V, Boiteux G, Seytre G, Kallel A, Serghei A (2015) J Chem Phys 142:194703

    Article  CAS  Google Scholar 

  37. A. Serghei et al., in preparation

    Google Scholar 

  38. Dyre JC, Schroder TB (1996) Phys Rev B 54:14884

    Google Scholar 

  39. Dyre JC, Schroder TB (2000) Rev Mod Phys 72:873

    Article  Google Scholar 

  40. Schroder TB (2000) Dyre JC (2000). Phys Rev Lett 84:310

    Article  CAS  Google Scholar 

  41. A. Serghei et al., in preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Serghei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Serghei, A., Samet, M., Boiteux, G., Kallel, A. (2016). Dielectric Properties of Ionic Liquids at Metal Interfaces: Electrode Polarization, Characteristic Frequencies, Scaling Laws. In: Paluch, M. (eds) Dielectric Properties of Ionic Liquids. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-32489-0_8

Download citation

Publish with us

Policies and ethics