Skip to main content

Femto- to Nanosecond Dynamics in Ionic Liquids: From Single Molecules to Collective Motions

  • Chapter
  • First Online:
Dielectric Properties of Ionic Liquids

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

The dynamics of room temperature ionic liquids (RTILs) have been intensively studied within the last decades as these are of high relevance for the solvation of solutes in applications of RTILs as reaction media. Broadband dielectric spectroscopy (DS) can readily cover any dynamics ranging from seconds to femtoseconds and is thus a widely applied technique to elucidate RTIL dynamics. As DS probes all dynamics that go along with a change in the macroscopic polarization, DS is excellently suited to study such compounds, where the motions of its charged and dipolar ions inevitably modulate sample polarization. However, interactions in RTILs are not only governed by long-ranged Coulombic forces. Also hydrogen bonding, pi-pi stacking and dispersion forces contribute significantly to the local potential energy landscape, making RTIL dynamics extremely complex. To fully correlate the dynamical information from dielectric spectra to molecular dynamics , the combination of DS with other techniques exploring liquid-state dynamics is advantageous as such a combination allows unraveling the wealth of information present in dielectric spectra and provides detailed molecular level insights. In this chapter we summarize recent advances in understanding the femto- to nanosecond dynamics of RTILs, which could only be obtained using combined experimental and theoretical efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 965–967. doi:10.1039/c39920000965

  2. Freemantle M (1998) Designer solvents. Chem Eng News 76:32–37. doi:10.1021/cen-v076n013.p032

    Article  Google Scholar 

  3. Castner EW, Margulis CJ, Maroncelli M, Wishart JF (2011) Ionic liquids: structure and photochemical reactions. Annu Rev Phys Chem 62:85–105. doi:10.1146/annurev-physchem-032210-103421

    Article  CAS  Google Scholar 

  4. Araque JC, Hettige JJ, Margulis CJ (2015) Modern room temperature ionic liquids, a simple guide to understanding their structure and how it may relate to dynamics. J Phys Chem B 119:12727–12740. doi:10.1021/acs.jpcb.5b05506

    Article  CAS  Google Scholar 

  5. Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed Engl 47:654–670. doi:10.1002/anie.200604951

    Article  Google Scholar 

  6. Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426. doi:10.1021/cr500411q

    Article  CAS  Google Scholar 

  7. Greaves TL, Drummond CJ (2013) Solvent nanostructure, the solvophobic effect and amphiphile self-assembly in ionic liquids. Chem Soc Rev 42:1096–1120. doi:10.1039/C2CS35339C

    Article  CAS  Google Scholar 

  8. Maginn EJ (2009) Molecular simulation of ionic liquids: current status and future opportunities. J Phys Condens Matter 21:373101. doi:10.1088/0953-8984/21/37/373101

    Article  CAS  Google Scholar 

  9. Dommert F, Wendler K, Berger R et al (2012) Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments. ChemPhysChem 13:1625–1637. doi:10.1002/cphc.201100997

    Article  CAS  Google Scholar 

  10. Russina O, Triolo A, Gontrani L, Caminiti R (2012) Mesoscopic structural heterogeneities in room-temperature ionic liquids. J Phys Chem Lett 3:27–33. doi:10.1021/jz201349z

    Article  CAS  Google Scholar 

  11. Fumino K, Reimann S, Ludwig R (2014) Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces. Phys Chem Chem Phys 16:21903–21929. doi:10.1039/C4CP01476F

    Article  CAS  Google Scholar 

  12. Hunt PA, Ashworth CR, Matthews RP (2015) Hydrogen bonding in ionic liquids. Chem Soc Rev 44:1257–1288. doi:10.1039/C4CS00278D

    Article  CAS  Google Scholar 

  13. Castner EW, Wishart JF, Shirota H (2007) Intermolecular dynamics, interactions, and solvation in ionic liquids. Acc Chem Res 40:1217–1227. doi:10.1021/ar700169g

    Article  CAS  Google Scholar 

  14. Tsuzuki S (2012) Factors controlling the diffusion of ions in ionic liquids. ChemPhysChem 13:1664–1670. doi:10.1002/cphc.201100870

    Article  CAS  Google Scholar 

  15. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599–610. doi:10.1103/RevModPhys.65.599

    Google Scholar 

  16. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Book  Google Scholar 

  17. Kaatze U (2013) Measuring the dielectric properties of materials. Ninety-year development from low-frequency techniques to broadband spectroscopy and high-frequency imaging. Meas Sci Technol 24:12005. doi:10.1088/0957-0233/24/1/012005

    Article  Google Scholar 

  18. Weingärtner H (2014) Dielectric properties of ionic liquids: achievements so far and challenges remaining. In: Ionic liquids further UnCOILed. Wiley, Hoboken, NJ, USA, pp 235–258

    Google Scholar 

  19. Buchner R, Hefter G (2009) Interactions and dynamics in electrolyte solutions by dielectric spectroscopy. Phys Chem Chem Phys 11:8984–8999. doi:10.1039/b906555p

    Article  CAS  Google Scholar 

  20. Gregory AP, Clarke RN (2006) A review of RF and microwave techniques for dielectric measurements on polar liquids. IEEE Trans Dielectr Electr Insul 13:727–743. doi:10.1109/TDEI.2006.1667730

    Article  CAS  Google Scholar 

  21. Wakai C, Oleinikova A, Ott M, Weingärtner H (2005) How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. J Phys Chem B 109:17028–17030. doi:10.1021/jp053946+

    Article  CAS  Google Scholar 

  22. Weingärtner H (2006) The static dielectric constant of ionic liquids. Zeitschrift für Phys Chemie 220:1395–1405. doi:10.1524/zpch.2006.220.10.1395

    Article  Google Scholar 

  23. Sangoro JR, Kremer F (2012) Charge transport and glassy dynamics in ionic liquids. Acc Chem Res 45:525–532. doi:10.1021/ar2001809

    Article  CAS  Google Scholar 

  24. Hensel-Bielowka S, Wojnarowska Z, Dzida M et al (2015) Heterogeneous nature of relaxation dynamics of room-temperature ionic liquids (EMIm)2 [Co(NCS)4] and (BMIm)2[Co(NCS)4]. J Phys Chem C 119:20363–20368. doi:10.1021/acs.jpcc.5b07123

    Article  CAS  Google Scholar 

  25. Sippel P, Lunkenheimer P, Krohns S et al (2015) Importance of liquid fragility for energy applications of ionic liquids. Sci Rep 5:13922. doi:10.1038/srep13922

    Article  CAS  Google Scholar 

  26. Sonnleitner T, Turton DA, Waselikowski S et al (2014) Dynamics of RTILs: A comparative dielectric and OKE study. J Mol Liq 192:19–25. doi:10.1016/j.molliq.2013.09.019

    Article  CAS  Google Scholar 

  27. Hunger J, Stoppa A, Buchner R, Hefter G (2008) From ionic liquid to electrolyte solution: dynamics of 1-N-butyl-3-N-methylimidazolium tetrafluoroborate/dichloromethane mixtures. J Phys Chem B 112:12913–12919. doi:10.1021/jp8045627

    Article  CAS  Google Scholar 

  28. Hubbard JB, Onsager L, van Beek WM, Mandel M (1977) Kinetic polarization deficiency in electrolyte solutions. Proc Natl Acad Sci USA 74:401–404. doi:10.1073/pnas.74.2.401

    Article  CAS  Google Scholar 

  29. Ottosson N, Hunger J, Bakker HJ (2014) Effect of cations on the hydrated proton. J Am Chem Soc 136:12808–12811. doi:10.1021/ja503635j

    Article  CAS  Google Scholar 

  30. Sangoro J, Iacob C, Serghei A et al (2008) Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. J Chem Phys 128:214509. doi:10.1063/1.2921796

    Article  CAS  Google Scholar 

  31. Zech O, Hunger J, Sangoro JR et al (2010) Correlation between polarity parameters and dielectric properties of [Na][TOTO]—a sodium ionic liquid. Phys Chem Chem Phys 12:14341–14350. doi:10.1039/c0cp00840k

    Article  CAS  Google Scholar 

  32. Krause C, Sangoro JR, Iacob C, Kremer F (2010) Charge transport and dipolar relaxations in imidazolium-based ionic liquids. J Phys Chem B 114:382–386. doi:10.1021/jp908519u

    Article  CAS  Google Scholar 

  33. Sangoro JR, Iacob C, Naumov S et al (2011) Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter 7:1678–1681. doi:10.1039/c0sm01404d

    Article  CAS  Google Scholar 

  34. Buchner R, Hefter GT, May PM (1999) Dielectric relaxation of aqueous NaCl solutions. J Phys Chem A 103:1–9. doi:10.1021/jp982977k

    Article  CAS  Google Scholar 

  35. Ensing W, Hunger J, Ottosson N, Bakker HJ (2013) On the orientational mobility of water molecules in proton and sodium terminated nafion membranes. J Phys Chem C 117:12930–12935. doi:10.1021/jp312623p

    Article  CAS  Google Scholar 

  36. Hunger J, Cerjak I, Schoenmaker H et al (2011) Precision waveguide system for measurement of complex permittivity of liquids at frequencies from 60 to 90 GHz. Rev Sci Instrum 82:104703

    Article  CAS  Google Scholar 

  37. Barthel J, Buchner R, Eberspächer P-N et al (1998) Dielectric relaxation spectroscopy of electrolyte solutions. Recent developments and prospects. J Mol Liq 78:83–109. doi:10.1016/S0167-7322(98)00085-3

    Article  CAS  Google Scholar 

  38. Ulbricht R, Hendry E, Shan J et al (2011) Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev Mod Phys 83:543–586. doi:10.1103/RevModPhys.83.543

    Google Scholar 

  39. Hunger J, Stoppa A, Thoman A et al (2009) Broadband dielectric response of dichloromethane. Chem Phys Lett 471:85–91. doi:10.1016/j.cplett.2009.02.024

    Article  CAS  Google Scholar 

  40. Hunger J (2009) Effects of polar compounds on the dynamics and dielectric properties of room-temperature ionic liquids. Ph.D. Thesis, University of Regensburg

    Google Scholar 

  41. Turton DA, Hunger J, Stoppa A et al (2009) Dynamics of imidazolium ionic liquids from a combined dielectric relaxation and optical Kerr effect study: evidence for mesoscopic aggregation. J Am Chem Soc 131:11140–11146. doi:10.1021/ja903315v

    Article  CAS  Google Scholar 

  42. Stoppa A, Hunger J, Buchner R et al (2008) Interactions and dynamics in ionic liquids. J Phys Chem B 112:4854–4858. doi:10.1021/jp800852z

    Article  CAS  Google Scholar 

  43. Hunger J, Stoppa A, Schrödle S et al (2009) Temperature dependence of the dielectric properties and dynamics of ionic liquids. ChemPhysChem 10:723–733. doi:10.1002/cphc.200800483

    Article  CAS  Google Scholar 

  44. Schröder C, Steinhauser O (2009) On the dielectric conductivity of molecular ionic liquids. J Chem Phys 131:114504. doi:10.1063/1.3220069

    Article  Google Scholar 

  45. Shim Y, Kim HJ (2013) Dielectric relaxation and solvation dynamics in a room-temperature ionic liquid: temperature dependence. J Phys Chem B 117:11743–11752. doi:10.1021/jp406353j

    Article  CAS  Google Scholar 

  46. Fumino K, Wulf A, Ludwig R (2008) The cation-anion interaction in ionic liquids probed by far-infrared spectroscopy. Angew Chem Int Ed Engl 47:3830–3834. doi:10.1002/anie.200705736

    Article  CAS  Google Scholar 

  47. Yamaguchi T, Koda S (2010) Mode-coupling theoretical analysis of transport and relaxation properties of liquid dimethylimidazolium chloride. J Chem Phys 132:114502. doi:10.1063/1.3354117

    Article  CAS  Google Scholar 

  48. Schröder C, Wakai C, Weingärtner H et al (2007) Collective rotational dynamics in ionic liquids: a computational and experimental study of 1-butyl-3-methyl-imidazolium tetrafluoroborate. J Chem Phys 126:084511. doi:10.1063/1.2464057

    Article  Google Scholar 

  49. Schröder C, Rudas T, Steinhauser O (2006) Simulation studies of ionic liquids: orientational correlations and static dielectric properties. J Chem Phys 125:244506. doi:10.1063/1.2404674

    Article  Google Scholar 

  50. Kirchner B (2010) Ionic liquids from theoretical investigations. Top Curr Chem 290:213–262. doi:10.1007/128_2008_36

    Article  Google Scholar 

  51. Gabl S, Schröder C, Steinhauser O (2012) Computational studies of ionic liquids: size does matter and time too. J Chem Phys 137:094501. doi:10.1063/1.4748352

    Article  Google Scholar 

  52. Schröder C, Sonnleitner T, Buchner R, Steinhauser O (2011) The influence of polarizability on the dielectric spectrum of the ionic liquid 1-ethyl-3-methylimidazolium triflate. Phys Chem Chem Phys 13:12240–12248. doi:10.1039/c1cp20559e

    Article  Google Scholar 

  53. Schröder C, Steinhauser O (2010) Computational dielectric spectroscopy of charged, dipolar systems. In: Computational spectroscopy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 279–321. doi:10.1002/9783527633272.ch10

    Google Scholar 

  54. Schröder C, Haberler M, Steinhauser O (2008) On the computation and contribution of conductivity in molecular ionic liquids. J Chem Phys 128:134501. doi:10.1063/1.2868752

    Article  Google Scholar 

  55. Horng ML, Gardecki JA, Papazyan A, Maroncelli M (1995) Subpicosecond measurements of polar solvation dynamics: coumarin 153 revisited. J Phys Chem 99:17311–17337. doi:10.1021/j100048a004

    Article  CAS  Google Scholar 

  56. Bagchi B (1989) Dynamics of solvation and charge transfer reactions in dipolar liquids. Annu Rev Phys Chem 40:115–141. doi:10.1146/annurev.pc.40.100189.000555

    Article  CAS  Google Scholar 

  57. Samanta A (2010) Solvation dynamics in ionic liquids: what we have learned from the dynamic fluorescence Stokes shift studies. J Phys Chem Lett 1:1557–1562. doi:10.1021/jz100273b

    Article  CAS  Google Scholar 

  58. Zhang X-X, Liang M, Ernsting NP, Maroncelli M (2013) Conductivity and solvation dynamics in ionic liquids. J Phys Chem Lett 4:1205–1210. doi:10.1021/jz400359r

    Article  CAS  Google Scholar 

  59. Zhang X-X, Liang M, Ernsting NP, Maroncelli M (2013) Complete solvation response of coumarin 153 in ionic liquids. J Phys Chem B 117:4291–4304. doi:10.1021/jp305430a

    Article  CAS  Google Scholar 

  60. Zhang X, Liang M, Hunger J et al (2013) Dielectric relaxation and solvation dynamics in a prototypical ionic liquid + dipolar protic liquid mixture: 1-butyl-3-methylimidazolium tetrafluoroborate + water. J Phys Chem B 117:15356–15368. doi:10.1021/jp4043528

    Article  CAS  Google Scholar 

  61. Lohse PW, Bartels N, Stoppa A et al (2012) Dielectric relaxation and ultrafast transient absorption spectroscopy of [C6mim]+[Tf2N]−/acetonitrile mixtures. Phys Chem Chem Phys 14:3596–3603. doi:10.1039/c2cp23704k

    Article  CAS  Google Scholar 

  62. Fayer MD (2014) Dynamics and structure of room temperature ionic liquids. Chem Phys Lett 616–617:259–274. doi:10.1016/j.cplett.2014.09.062

    Article  Google Scholar 

  63. Li J, Wang I, Fruchey K, Fayer MD (2006) Dynamics in supercooled ionic organic liquids and mode coupling theory analysis. J Phys Chem A 110:10384–10391. doi:10.1021/jp0637476

    Article  CAS  Google Scholar 

  64. Hunt NT, Jaye AA, Meech SR (2007) Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE). Phys Chem Chem Phys 9:2167–2180. doi:10.1039/b616078f

    Article  CAS  Google Scholar 

  65. Giraud G, Gordon CM, Dunkin IR, Wynne K (2003) The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study. J Chem Phys 119:464–477. doi:10.1063/1.1578056

    Article  CAS  Google Scholar 

  66. Xiao D, Hines LG, Li S et al (2009) Effect of cation symmetry and alkyl chain length on the structure and intermolecular dynamics of 1,3-dialkylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids. J Phys Chem B 113:6426–6433. doi:10.1021/jp8102595

    Article  CAS  Google Scholar 

  67. Xue L, Tamas G, Gurung E, Quitevis EL (2014) Probing the interplay between electrostatic and dispersion interactions in the solvation of nonpolar nonaromatic solute molecules in ionic liquids: An OKE spectroscopic study of CS2/[CnC1im][NTf2] mixtures (n = 1 − 4). J Chem Phys 140:164512. doi:10.1063/1.4872038

    Article  Google Scholar 

  68. Xiao D, Hines LG, Holtz MW et al (2010) Effect of cation symmetry on the low-frequency spectra of imidazolium ionic liquids: OKE and Raman spectroscopic measurements and DFT calculations. Chem Phys Lett 497:37–42. doi:10.1016/j.cplett.2010.07.085

    Article  CAS  Google Scholar 

  69. Shirota H (2012) Comparison of low-frequency spectra between aromatic and nonaromatic cation based ionic liquids using femtosecond raman-induced Kerr effect spectroscopy. ChemPhysChem 13:1638–1648. doi:10.1002/cphc.201100731

    Article  CAS  Google Scholar 

  70. Ishida T, Shirota H (2013) Dicationic versus monocationic ionic liquids: distinctive ionic dynamics and dynamical heterogeneity. J Phys Chem B 117:1136–1150. doi:10.1021/jp3110425

    Article  CAS  Google Scholar 

  71. Shirota H, Kakinuma S (2015) Temperature dependence of low-frequency spectra in molten bis(trifluoromethylsulfonyl)amide salts of imidazolium cations studied by femtosecond raman-induced Kerr effect spectroscopy. J Phys Chem B 119:9835–9846. doi:10.1021/acs.jpcb.5b01776

    Article  CAS  Google Scholar 

  72. Sonnleitner T, Turton DA, Hefter G et al (2015) Ultra-broadband dielectric and optical Kerr-effect study of the ionic liquids ethyl and propylammonium nitrate. J Phys Chem B 119:8826–8841. doi:10.1021/jp502935t

    Article  CAS  Google Scholar 

  73. Turton DA, Sonnleitner T, Ortner A et al (2012) Structure and dynamics in protic ionic liquids: A combined optical Kerr-effect and dielectric relaxation spectroscopy study. Faraday Discuss 154:145–153. doi:10.1039/c1fd00054c

    Article  CAS  Google Scholar 

  74. Giraud G, Wynne K (2003) A comparison of the low-frequency vibrational spectra of liquids obtained through infrared and Raman spectroscopies. J Chem Phys 119:11753. doi:10.1063/1.1623747

    Article  CAS  Google Scholar 

  75. Fukasawa T, Sato T, Watanabe J et al (2005) Relation between dielectric and low-frequency Raman spectra of hydrogen-bond liquids. Phys Rev Lett 95:197802. doi:10.1103/PhysRevLett.95.197802

  76. Turton DA, Hunger J, Hefter G et al (2008) Glasslike behavior in aqueous electrolyte solutions. J Chem Phys 128:161102. doi:10.1063/1.2906132

    Article  Google Scholar 

  77. Turton DA, Hunger J, Stoppa A et al (2011) Rattling the cage: Micro- to mesoscopic structure in liquids as simple as argon and as complicated as water. J Mol Liq 159:2–8. doi:10.1016/j.molliq.2010.04.005

    Article  CAS  Google Scholar 

  78. Greaves TL, Drummond CJ (2015) Protic ionic liquids: evolving structure–property relationships and expanding applications. Chem Rev 115:11379–11448. doi:10.1021/acs.chemrev.5b00158

    Article  CAS  Google Scholar 

  79. Nibbering ETJ, Fidder H, Pines E (2005) Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics. Annu Rev Phys Chem 56:337–367. doi:10.1146/annurev.physchem.56.092503.141314

    Article  CAS  Google Scholar 

  80. Bakker HJ, Skinner JL (2010) Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem Rev 110:1498–1517. doi:10.1021/cr9001879

    Article  CAS  Google Scholar 

  81. Zheng J, Kwak K, Fayer MD (2007) Ultrafast 2D IR vibrational echo spectroscopy. Acc Chem Res 40:75–83. doi:10.1021/ar068010d

    Article  CAS  Google Scholar 

  82. Olschewski M, Knop S, Lindner J, Vöhringer P (2013) From single hydrogen bonds to extended hydrogen-bond wires: low-dimensional model systems for vibrational spectroscopy of associated liquids. Angew Chemie Int Ed 52:9634–9654. doi:10.1002/anie.201210009

    Article  CAS  Google Scholar 

  83. Hamm P, Zanni M (2011) Concepts and methods of 2D infrared spectroscopy. Cambridge University Press, Oxford, UK

    Book  Google Scholar 

  84. Tan H-S, Piletic IR, Fayer MD (2005) Polarization selective spectroscopy experiments: methodology and pitfalls. J Opt Soc Am B 22:2009–2017. doi:10.1364/JOSAB.22.002009

    Article  CAS  Google Scholar 

  85. Kramer PL, Giammanco CH, Fayer MD (2015) Dynamics of water, methanol, and ethanol in a room temperature ionic liquid. J Chem Phys 142:212408. doi:10.1063/1.4914156

    Article  Google Scholar 

  86. Wong DB, Giammanco CH, Fenn EE, Fayer MD (2013) Dynamics of isolated water molecules in a sea of ions in a room temperature ionic liquid. J Phys Chem B 117:623–635. doi:10.1021/jp310086s

    Article  CAS  Google Scholar 

  87. Sturlaugson AL, Fruchey KS, Fayer MD (2012) Orientational dynamics of room temperature ionic liquid/water mixtures: water-induced structure. J Phys Chem B 116:1777–1787. doi:10.1021/jp209942r

    Article  CAS  Google Scholar 

  88. Hunger J, Sonnleitner T, Liu L et al (2012) Hydrogen-bond dynamics in a protic ionic liquid: evidence of large-angle jumps. J Phys Chem Lett 3:3034–3038. doi:10.1021/jz301334j

    Article  CAS  Google Scholar 

  89. Zheng Z-P, Fan W, Roy S et al (2014) Ionic liquids: not only structurally but also dynamically heterogeneous. Angew Chem Int Ed Engl 54:687–690. doi:10.1002/anie.201409136

    Google Scholar 

Download references

Acknowledgments

We are indebted to all our academic collaborations, whose names occur frequently in the list of references below. Without their contribution not a single combined study, as summarized in this chapter, would have been possible. We are also grateful to all co-workers, students and colleagues whose enthusiasm and permanent availability for discussion was crucial for the work presented herein. We also thank the Deutsche Forschungsgemeinschaft for funding within the priority program SPP 1191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hunger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hunger, J., Buchner, R. (2016). Femto- to Nanosecond Dynamics in Ionic Liquids: From Single Molecules to Collective Motions. In: Paluch, M. (eds) Dielectric Properties of Ionic Liquids. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-32489-0_3

Download citation

Publish with us

Policies and ethics