Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 399 Accesses

Abstract

With the steep growth of mobile population and wireless multimedia data in recent years, Device-to-Device (D2D) communications are promising data offloading solutions and spectrum efficiency enhancement methods. They have drawn considerable attention in communication research community. In this chapter, we firstly give an overview of D2D communications from the aspects of their characteristics, application scenarios, and research topics. Then, the security architectures, threat model, and security requirements of D2D communications are presented. Finally, the organization of the book is depicted for a comprehensive understanding for all the content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Condoluci M, Dohler M, Araniti G, Molinaro A, Zheng K (2015) Toward 5G DenseNets: architectural advances for effective machine-type communications over femtocells. IEEE Commun Mag 53(1):134–141

    Article  Google Scholar 

  2. Wu D, Wang J, Hu R, Cai Y, Zhou L (2014) The role of mobility for D2D communications in LTE-advanced networks: energy vs. bandwidth efficiency. IEEE Wirel Commun 21(4):66–71

    Article  Google Scholar 

  3. Mumtaz S, Mohammed K, Huq S, Rodriguez J (2014) Direct mobile-to-mobile communications: paradigm for 5G. IEEE Wirel Commun (21) 10:14–23

    Google Scholar 

  4. Zhu, D, Swindlehurst, A, Fakoorian, S et al (2014) Device-to-device communications: the physical-layer security advantage. In: IEEE international conference on acoustic, speech and signal processing, Florence, Italy, May 4–9, pp 1606–1610

    Google Scholar 

  5. Tehrani MN, Uysal M, Yanikomeroglu H (2014) Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun Mag (52)5:86–92

    Google Scholar 

  6. Asadi A, Wang Q, Mancuso V (2014) A survey on device-to-device communication in cellular networks. IEEE Commun Surv Tutorials 16(4):1801–1819

    Article  Google Scholar 

  7. Zhou L, Wu D, Zheng B et al (2014) Joint physical-application layer security for wireless multimedia delivery, IEEE Commun Mag 52(3):66–72

    Article  Google Scholar 

  8. Ryu S, Park S, Park N, Chung S (2013) Development of device-to-device communication based new mobile proximity multimedia service business models. In: IEEE international conference on multimedia and expo workshops.

    Google Scholar 

  9. Mumtaz S, Rodriguez J (2014) Smart device to smart device communication. Springer, Cham

    Book  Google Scholar 

  10. Zhang A, Chen J, Zhou L, Yu S (2015) Graph theory based QoE-driven cooperation stimulation for content dissemination in device-to-device communication. IEEE Trans Emerg Top Comput. doi: 10.1109/TETC.2015.2430816

    Google Scholar 

  11. Cisco visual network index: global mobile data traffic forecast update, 2013–2018

    Google Scholar 

  12. Zhang B, Li Y, Jin D, Hui P, Han Z (2015) Social-aware peer discovery for D2D communications underlaying cellular networks. IEEE Trans Wirel Commun 14(5):2426–2439

    Article  Google Scholar 

  13. Prasad A, Kunz A, Velev G, Samdanis K, Song J (2014) Energy efficient D2D discovery for proximity services in 3GPP. IEEE Veh Technol Mag 9(4): 40–50

    Article  Google Scholar 

  14. Chao S, Lee H, Chou C, Wei H (2013) Bio-inspired proximity discovery and synchronization for D2D communications. IEEE Commun Lett 17(12):2300–2303

    Article  Google Scholar 

  15. Fodor G, Dahlman E, Mildh G et al (2012) Design aspects of network assisted device-to-device communications. IEEE Commun Mag 50(3):170–177

    Article  Google Scholar 

  16. Zhu K, Hossain E (2015) Joint mode selection and spectrum partitioning for device-to-device communication: a dynamic Stackelberg game. IEEE Trans Wirel Commun 14(3):1406–1420

    Article  Google Scholar 

  17. Elsawy H, Hossain E, Alouini, MS (2014) Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks. IEEE Trans Commun 62(11):4147–4161

    Article  Google Scholar 

  18. Wen S, Zhu X, Zhang X, Yang D (2013) QoS-aware mode selection and resource allocation scheme for device-to-device (D2D) communication in cellular networks. In: IEEE internet conference on communications

    Book  Google Scholar 

  19. Min H, Seo W, Lee J, Park S, Hong D (2011) Reliability improvement using receive mode selection in the Device-to-Device uplink period underlaying cellular networks. IEEE Trans Wirel Commun 10(2):413–418

    Article  Google Scholar 

  20. Wu D, Cai Y, Hu R Q, Qian Y (2015) Dynamic distributed resource sharing for mobile D2D communications. IEEE Trans Wirel Commun. doi: 10.1109/TWC.2015.2438292

    Google Scholar 

  21. Wei L, Hu R Q, Qian Y, Wu G (2015) Energy-efficiency and spectrum-efficiency of multi-hop device-to-device communications underlaying cellular networks. IEEE Trans Veh Technol. doi: 10.1109/TVT.2015.2389823

    Google Scholar 

  22. Wu D, Wang J, Hu R Q, Cai Y, Zhou L (2014) Energy-efficient resource sharing for mobile device-to-device multimedia communications. IEEE Trans Veh Technol 63(5):2093–2103

    Article  Google Scholar 

  23. Wu D, Zhou L, Cai Y (2012) Energy-efficient resource allocation for uplink orthogonal frequency division multiple access systems using correlated equilibrium. IET Commun 6(6):659–667

    Article  MathSciNet  Google Scholar 

  24. Malandrino F, Limani Z, Casetti C, Chiasserini C (2015) Interference-aware downlink and uplink resource allocation in HetNets with D2D support. IEEE Trans Wirel Commun 14(5):2729–2741

    Article  Google Scholar 

  25. Lee N, Lin X, Andrews J, Heath R (2015) Power control for D2D underlaid cellular networks: modeling, algorithms, and analysis. IEEE J Sel Areas Commun 33(1):1–13

    Article  Google Scholar 

  26. Wu Y, Wang J, Qian L, Schober R (2015) Optimal power control for energy efficient D2D communication and its distributed implementation. IEEE Commun Lett 19(5):815–818

    Article  Google Scholar 

  27. Erturk M, Mukherjee S, Ishii H et al (2013) Distributions of transmit power and SINR in device-to-device networks. IEEE Commun Lett 17(2):273–276

    Article  Google Scholar 

  28. Fodor G, Belleschi D, Johansson M, Abrardo A (2013) A comparative study of power control approaches for device-to-device communications. In: IEEE international conference on communications

    Book  Google Scholar 

  29. Sheng M, Liu J, Zhang Y, Sun H, Li J (2015) On transmission capacity region of D2D integrated cellular networks with interference management. IEEE Trans Commun 63(4):1383–1399

    Article  Google Scholar 

  30. Lei L, Zhang Y, Shen X, Lin C, Zhong Z (2013) Performance analysis of device-to-device communications with dynamic interference using stochastic Petri nets. IEEE Trans Wirel Commun 12(12):6121–6141

    Article  Google Scholar 

  31. Xu W, Liang L, Zhang H, Jin S, Li J, Lei M (2012) Performance enhanced transmission in device-to-device communications: beamforming or interference cancellation. In: IEEE global communications conference, Anaheim, California, USA

    Google Scholar 

  32. Min H, Lee J, Park S, Hong D (2011) Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks. IEEE Trans Wirel Commun 10(12):3995–4000

    Article  Google Scholar 

  33. Golrezaei N, Dimakis A, Molisch AF (2014) Scaling behavior for device-to-device communications with distributed caching. IEEE Trans Inf Theory 60(7):4286–4298

    Article  MathSciNet  Google Scholar 

  34. Li Y, Wang W (2014) Message dissemination in intermittently connected D2D communication networks. IEEE Trans Wirel Commun 13(7):3978–3990

    Article  Google Scholar 

  35. Ji M, Caire G, Molisch AF (2013) Fundamental limits of distributed caching in D2D wireless networks. In: IEEE Information Theory Workshop, Seville

    Book  Google Scholar 

  36. Borst S, Gupta V, Walid A (2010) Distributed caching algorithms for content distribution networks. In: IEEE international conference on computer communications, San Diego, CA/USA, Sep

    Book  Google Scholar 

  37. Antonopoulos A, Kartsakli E, Verikoukis C (2014) Game theoretic D2D content dissemination in 4G cellular networks. IEEE Commun Mag 52(6):125–132

    Article  Google Scholar 

  38. Hu J, Yang L, Hanzo L (2013) Mobile social networking aided content dissemination in heterogeneous networks. China Commun 10(6):1–13

    Google Scholar 

  39. Zhou L, Chao H (2011) Multimedia traffic security architecture for internet of things. IEEE Netw 25(3):35–40

    Article  Google Scholar 

  40. Zhou L, Zhang Y, Song K, Jing W, Vasilakos A (2011) Distributed media-service scheme for P2P-based vehicular networks. IEEE Trans Veh Technol 60(2):692–703

    Article  Google Scholar 

  41. Ioannidis S, Chaintreau A, Massoulie L (2009) Optimal and scalable distribution of content updates over a mobile social network. In: IEEE international conference on computer communications

    Book  Google Scholar 

  42. Shakkottai S, Johari R (2010) Demand-aware content distribution on the internet. IEEE/ACM Trans Netw 18(2):476–489

    Article  Google Scholar 

  43. Bass F M (1969) A new product growth model for consumer durables. Manag Sci 15:215–227

    Article  MATH  Google Scholar 

  44. Zhao, J, Cao G (2008) VADD: vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Trans Veh Technol 57(3):1910–1922

    Article  MathSciNet  Google Scholar 

  45. Zhao J, Zhang Y, Cao G (2007) Data pouring and buffering on the road: a new data dissemination paradigm for vehicular ad hoc networks. IEEE Trans Veh Technol 56(6):3266–3277

    Article  Google Scholar 

  46. Alam M, Yang D, Rodriguez J, Abd-Alhameed R (2014) Secure device-to-device communication in LTE-A. IEEE Commun Mag 52(4):66–73

    Article  Google Scholar 

  47. Panaousis E, Alpcan T, Fereidooni H, Conti M (2014) Secure message delivery games for device-to-device communications. Springer, Cham, pp 195–215

    Google Scholar 

  48. Nobach L, Hausheer D (2014) Towards decentralized, energy and privacy-aware device-to-device content delivery. In: IFIP international federation for information processing, pp 128–132

    Google Scholar 

  49. Kwon H, Hahn C, Kim D, Kang K, Hur J (2014) Secure device-to-device authentication in mobile multi-hop networks. Springer, Cham, pp 267–278

    Google Scholar 

  50. Yue J, Ma C, Yu H,Zhou W (2013) Secrecy-based access control for device-to-device communication underlaying cellular networks. IEEE Commun Lett 17(11):2068–2071

    Article  Google Scholar 

  51. Zhang H, Wang T, Song L, and Han Z (2014) Radio resource allocation for physical-layer security in D2D underlay communications. In: IEEE international conference on communications, Sydney, Australia, June

    Book  Google Scholar 

  52. Zhu D, Swindlehurst A, Fakoorian S, Xu, W, Zhao C (2014) Device-to-device communications: the physical-layer security advantage. In: IEEE international conference on acoustic, speech and signal processing, Florence, Italy, May

    Google Scholar 

  53. Yu W, Liu K (2007) Game theoretic analysis of cooperation stimulation and security in autonomous mobile ad hoc networks. IEEE Trans Mob Comput 6(5):507–521

    Article  Google Scholar 

  54. Niu B, Zhao H, Jiang H (2011) A cooperation stimulation strategy in wireless multicast networks. IEEE Trans Signal Process 59(5):2355–2369

    Article  MathSciNet  Google Scholar 

  55. Mahmoud M, Shen X (2012) FESCIM: fair, efficient, and secure cooperation incentive mechanism for multihop cellular networks. IEEE Trans Mob Comput 11(5):753–766

    Article  Google Scholar 

  56. Kang X, Wu Y (2013) A game-theoretic approach for cooperation stimulation in peer-to-peer streaming networks. IEEE international conference on communications

    Book  Google Scholar 

  57. Zhou H, Chen J, Fan J, Du Y, Das S (2013) ConSub: incentive-based content subscribing in selfish opportunistic mobile networks. IEEE J Sel Area Commun Supplement 31(9):669–679

    Article  Google Scholar 

  58. Zhang G, Yang K, Liu P, Yang X, Ding E (2012) Resource-exchange based cooperation stimulating mechanism for wireless ad hoc networks. In: IEEE international conference on communications

    Book  Google Scholar 

  59. Zhang G, Cong L, Ding E, Yang K, Yang X (2011) Fair and efficient resource sharing for selfish cooperative communication networks using cooperative game theory. In: IEEE international conference on communications

    Book  Google Scholar 

  60. Chen X, Proulx B, Gong X, Zhang J (2013) Social trust and social reciprocity based cooperative D2D communications. In: ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), Bangalore, India

    Google Scholar 

  61. Chen X, Proulx B, Gong X, Zhang J (2015) Exploiting social ties for cooperative D2D communications: a mobile social networking case. IEEE/ACM Trans Netw 23(5):1471–1484

    Article  Google Scholar 

  62. 3GPP, TR 23.703, v. 0.4.0, Study on architecture enhancements to support proximity services (ProSe). Release 12, June 2013

    Google Scholar 

  63. 3GPP, TR 33.401, v. 12.9.0 security architecture. Release 12, Sept. 2013

    Google Scholar 

  64. Zhang A, Chen J, Zhou L (2015) Content dissemination and security in device-to-device (D2D) communication. Future of wireless networks: architectures, protocols, and services. Springer, New York

    Google Scholar 

  65. Li Z, Shen H (2012) Game-Theoretic analysis of Cooperation incentive strategies in mobile Ad Hoc networks. IEEE Trans Mob Comput 11(8):1287–1303

    Article  Google Scholar 

  66. Chen T, Zhu L, Wu F, Zhong S (2011) Stimulating cooperation in vehicular ad hoc networks: a coalitional game theoretic approach. IEEE Trans Veh Technol 60(2):566–579

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Zhang, A., Zhou, L., Wang, L. (2016). Introduction. In: Security-Aware Device-to-Device Communications Underlaying Cellular Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32458-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32458-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32457-9

  • Online ISBN: 978-3-319-32458-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics