Skip to main content

Groundwater Storage Changes: Present Status from GRACE Observations

  • Chapter
  • First Online:
Remote Sensing and Water Resources

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 55))

Abstract

Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) provide quantitative measurement of terrestrial water storage (TWS) changes with unprecedented accuracy. Combining GRACE-observed TWS changes and independent estimates of water change in soil and snow and surface reservoirs offers a means for estimating groundwater storage change. Since its launch in March 2002, GRACE time-variable gravity data have been successfully used to quantify long-term groundwater storage changes in different regions over the world, including northwest India, the High Plains Aquifer and the Central Valley in the USA, the North China Plain, Middle East, and southern Murray–Darling Basin in Australia, where groundwater storage has been significantly depleted in recent years (or decades). It is difficult to rely on in situ groundwater measurements for accurate quantification of large, regional-scale groundwater storage changes, especially at long timescales due to inadequate spatial and temporal coverage of in situ data and uncertainties in storage coefficients. The now nearly 13 years of GRACE gravity data provide a successful and unique complementary tool for monitoring and measuring groundwater changes on a global and regional basis. Despite the successful applications of GRACE in studying global groundwater storage change, there are still some major challenges limiting the application and interpretation of GRACE data. In this paper, we present an overview of GRACE applications in groundwater studies and discuss if and how the main challenges to using GRACE data can be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abidin HZ, Andreas H, Djaja R, Darmawa D, Gamal M (2008) Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys. GPS Solut 12(1):23–32

    Google Scholar 

  • Awange JL, Fleming KM, Kuhn M, Featherstone WE, Heck B, Anjasmara I (2011) On the suitability of the 4°×4° GRACE mascon solutions for remote sensing Australian hydrology. Remote Sens Environ 115:864–875

    Google Scholar 

  • Bettadpur S (2012) CSR level-2 processing standards document for product release 04, GRACE 327-742, The GRACE Project, Center for Space Research, University of Texas at Austin

    Google Scholar 

  • Breña-Naranjo JA, Kendall AD, Hyndman DW (2014) Improved methods for satellite-based groundwater storage estimates: a decade of monitoring the high plains aquifer from space and ground observations. Geophys Res Lett 41:6167–6173. doi:10.1002/2014GL061213

    Google Scholar 

  • Chao BF (2005) On inversion for mass distribution from global (time-variable) gravity field. J Geodyn 39:223–230. doi:10.1016/j.jog.2004.11.001

    Google Scholar 

  • Chen JL, Wilson CR, Famiglietti JS, Rodell M (2005) Spatial sensitivity of the gravity recovery and climate experiment (GRACE) time-variable gravity observations. J Geophys Res (Solid Earth) 110(B9):B8408. doi:10.1029/2004JB003536

  • Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of greenland ice sheet. Science 313:1958–1960. doi:10.1126/science.1129007

    Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Blankenship DD, Ivins ER (2007) Patagonia icefield melting observed by gravity recovery and climate experiment (GRACE). Geophys Res Lett 34:L22501. doi:10.1029/2007GL031871

  • Chen JL, Wilson CR, Blankenship DD, Tapley BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci 2:859–862. doi:10.1038/NGEO694

    Google Scholar 

  • Chen JL, Wilson CR, Tapley BD (2013) Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nat Geosci 6:549–552. doi:10.1038/NGEO1829

    Google Scholar 

  • Chen JL, Li J, Zhang ZZ, Ni SN (2014) Long-term groundwater variations in northwest India from satellite gravity measurements. Global Planet Change 116:130–138. doi:10.1016/j.gloplacha.2014.02.007

    Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Scanlon B, Gu¨ntner A (2015a) Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations. Glob Planet Change. doi:10.1016/j.gloplacha.2015.xx.xxx

  • Chen JL, Wilson CR, Li J, Zhang Z (2015b) Reducing leakage error in GRACE-observed long-term ice mass change: a case study in West Antarctica. J Geodesy. doi:10.1007/s00190-015-0824-2

    Google Scholar 

  • Cheng MK, Ries JR (2012) Monthly estimates of C20 from 5 SLR satellites based on GRACE RL05 models, GRACE Technical Note 07, The GRACE Project, Center for Space Research, University of Texas at Austin (ftp://podaac.jpl.nasa.gov/allData/grace/docs/TN-07_C20_SLR.txt)

  • Diffenbaugh NS, Swain DL, Touma D (2015) Anthropogenic warming has increased drought risk in California. Proc Natl Acad Sci USA 112(13):3931–3936

    Google Scholar 

  • Do¨ ll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G, Scanlon BR (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59:143–156. doi:10.1016/j.jog.2011.05.001

    Google Scholar 

  • Famiglietti JS (2014) The global groundwater crisis. Nat Clim Change 4:945–948. doi:10.1038/nclimate2425

    Google Scholar 

  • Famiglietti JS, Rodell M (2013) Water in the balance. Science 340:1300–1301. doi:10.1126/science.1236460

    Google Scholar 

  • Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. doi:10.1029/2010GL046442

    Google Scholar 

  • Faunt CC (ed) (2009) Groundwater availability of the central valley aquifer, California, U.S. Geol. Surv. Prof. Pap., 1766, p 225

    Google Scholar 

  • Feng W, Zhong M, Lemoine J-M, Biancale R, Hsu H-T, Xia J (2013) Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements. Water Resour Res 49:2110–2118. doi:10.1002/wrcr.20192

    Google Scholar 

  • Foster SSD, Loucks DP (eds) (2006) Non-renewable groundwater resources: a guidebook on sociallysustainable management for water-policy makers. UNESCO, Paris

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, p 604

    Google Scholar 

  • Galloway D, Jones DR, Ingebritsen SE (eds) (1999) Land subsidence in the United States. U.S. Geolog. Surv., Reston (Circular 1182)

    Google Scholar 

  • Geruo A, Wahr J, Zhong S (2013) Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys J Int 192:557–572. doi:10.1093/gji/ggs030

    Google Scholar 

  • Giao PH, Nutalaya P (2006) Land subsidence in Bangkok, Thailand. Eng Geol 82(4):187–201

    Google Scholar 

  • Gleeson T et al (2010) Groundwater sustainability strategies. Nat Geosci 3:378–379. doi:10.1038/ngeo881

    Google Scholar 

  • GĂ¼ntner A, Stuck J, Werth S, Döll P, Verzano K, Merz B (2007) A global analysis of temporal and spatial variations in continental water storage. Water Resour Res 43:W05416. doi:10.1029/2006WR005247

  • Houborg R,RodellM,Li B,Reichle R,ZaitchikB(2012)Drought indicators based onmodel assimilatedGRACE terrestrial water storage observations. Water Resour Res 48:W07525. doi:10.1029/2011WR011291

  • Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518. doi:10.1038/nature10847

    Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the earth’s gravity field, department of geodetic science and surveying. Ohio State University, Columbus

    Google Scholar 

  • Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50:2679–2692. doi:10.1002/2013WR014633

    Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: A global problem. Hydrogeol J 13:317–320

    Google Scholar 

  • Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48:W04531. doi:10.1029/2011WR011453

  • Lavery B, Joung G, Nicholls N (1997) An extended high-quality historical rainfall dataset for Australia. Aust Meteorol Mag 46:27–38

    Google Scholar 

  • Leblanc MJ, Tregoning P, Ramillien G, Tweed SO, Fakes A (2009) Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour Res 45:W04408. doi:10.1029/2008WR007333

  • Leblanc MJ, Tweed SO, Van Dijk AIJM, Timbal B (2012) A review of historic and future hydrological changes in the Murray–Darling Basin. Glob Planet Change 80–81:226–246

    Google Scholar 

  • Li B, Rodell M, Zaitchik BF, Reichle RH, Koster RD, van Dam TM (2012) Assimilation of GRACE terrestrial water storage into a land surface model: evaluation and potential value for drought monitoring in western and central Europe. J Hydrol 446–447:103–115. doi:10.1016/j.jhydrol.2012.04.035

    Google Scholar 

  • Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46:11517. doi:10. 1029/2009WR008564

    Google Scholar 

  • Luthcke SB, Sabaka TJ, Loomis BD, Arendt AA, McCarthy JJ, Camp J (2013) Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J Glaciol 59:613–631. doi:10.3189/2013JoG12J147

    Google Scholar 

  • Maupin MA, Barber NL (2005) Estimated withdrawals from principal aquifers in the United States, 2000, U.S. Geological Survey Circular 1279

    Google Scholar 

  • McGuire VL (2009) Changes in water levels and storage in the high plains aquifer, predevelopment to 2007: U.S. Geological Survey Fact Sheet 2009–3005, p 2. http://pubs.usgs.gov/fs/2009/3005/

  • Oleson K, et al (2013) Technical description of version 4.5 of the community land model (CLM), Tech. Rep. NCAR/TN-503?STR,National Center for Atmosperic Research, Boulder, CO. doi:10.5065/D6RR1W7M

  • Richey AS (2014) Stress and resilience in the world’s largest aquifer systems: A GRACE-based methodology, PhD Dissertation, University of California, Irvine

    Google Scholar 

  • Rieser D, Kuhn M, Pail R, Anjasmara IM, Awange J (2010) Relation between GRACE-derived surface mass variations and precipitation over Australia. Aust J Earth Sci 57:887–900. doi:10.1080/08120099.2010.512645

    Google Scholar 

  • Rodell M, Famiglietti JS (2001) An analysis of terrestrial water storage variations in Illinois with implications for the gravity recovery and climate experiment (GRACE). Water Resour Res 37:1327–1340.doi:10.1029/2000WR900306

    Google Scholar 

  • Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the high plains aquifer, central U.S. J Hydrol 263:245–256

    Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Google Scholar 

  • Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15:159–166. doi:10.1007/s10040-006-0103-7

    Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi:10.1038/nature08238

    Google Scholar 

  • Rowlands DD et al (2005) Resolvingmassfluxathighspatialandtemporalresolution using GRACE intersatellite measurements. Geophys Res Lett 32:L04310

    Google Scholar 

  • Scanlon BR, Longuevergne L, Long D (2012a) Ground referencing GRACE satellite estimates of groundwater storage changes in the California central valley, USA. Water Resour Res 48:4520. doi:10.1029/2011WR011312

  • Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012b) Groundwater depletion and sustainability of irrigation in the US high plains and central valley. Proc Natl Acad Sci 109(24):9320–9325. doi:10.1073/pnas.1200311109

    Google Scholar 

  • Schrama EJO, Wouters B, Rietbroek R (2014) A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. J Geophys Res (Solid Earth) 119:6048–6066. doi:10.1002/2013JB010923

    Google Scholar 

  • Shamsudduha M, Taylor RG, Longuevergne L (2012) Monitoring groundwater storage changes in the highly seasonal humid tropics: validation of GRACE measurements in the Bengal Basin. Water Resour Res 48(2):W02508. doi:10.1029/2011WR010993

  • Strassberg G, Scanlon BR, Chambers D (2009) Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the High Plains aquifer, central United States. Water Resour Res 45:W5410. doi:10.1029/2008WR006892

  • Swain DL, Tsiang M, Haugen M, Singh D, Charland A, Rajaratnam B, Diffenbaugh NS (2014) The extraordinary California drought of 2013/2014: character, context, and the role of climate change. Bull Am Meteorol Soc 95(9):S3–S7

    Google Scholar 

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

  • Tapley BD, Bettadpur S, Watkins MM, Reigber C (2004) The gravity recovery and climate experiment; mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920

    Google Scholar 

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi:10.1029/2009GL039401

  • Tularam GA, Krishna M (2009) Long term consequences of groundwater pumping in Australia: a review of impacts around the globe. J Appl Sci Environ Sanit, 4(2):151–166 (open access at http://www98.griffith.edu.au/dspace/handle/10072/29294).

  • van Dijk A, Podger G, Kirby M (2007) Integrated water resources management in the Murray-Darling Basin: Increasing demands on decreasing supplies. In: A. Schumann, M. Pahlow (eds), Reducing the vulnerability of societies to water related risks at the basin scale. IAHS Publ., 317, pp 24–30

    Google Scholar 

  • van Dijk AIJM, Beck HE, Crosbie RS, de Jeu RAM, Liu YY, Podger GM, Timbal B, Viney NR (2013) The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour Res. doi:10.1002/wrcr.20123

    Google Scholar 

  • Velicogna I, Wahr J (2006) Acceleration of greenland ice mass loss in spring 2004. Nature 443:329–331. doi:10.1038/nature.05168

  • Voss KA, Famiglietti JS, Lo M, Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris– Euphrates-Western Iran region. Water Resour Res 49:904–914. doi:10.1002/wrcr.20078

    Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30230. doi:10.1029/98JB02844

    Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31:L11501. doi:10.1029/2004GL019779

    Google Scholar 

  • Wang J, Zhang L, Rozelle C, Blanke A, Huang Q (2006) Groundwater in China: development and response. In: Giordano M, Villholth KG (eds) The agricultural groundwater revolution: opportunities and threats to development. CABI Publishing, Wallingford

    Google Scholar 

  • Wouters B, Chambers D, Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20501. doi:10.1029/2008GL034816

  • Yeh PJ-F, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the gravity recovery and climate experiment (GRACE). Water Resour Res 42:W12203. doi:10.1029/2006WR005374

  • Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River Basin. J Hydrometeorol 9(3):535–548. doi:10.1175/2007JHM951.1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianli Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Famigliett, J.S., Scanlon, B.R., Rodell, M. (2016). Groundwater Storage Changes: Present Status from GRACE Observations. In: Cazenave, A., Champollion, N., Benveniste, J., Chen, J. (eds) Remote Sensing and Water Resources. Space Sciences Series of ISSI, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-32449-4_9

Download citation

Publish with us

Policies and ethics