Skip to main content

Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes

  • Chapter
  • First Online:
Remote Sensing and Water Resources

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 55))

Abstract

Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in terrestrial water storage. While an increasing number of case studies have provided a rich overview on regional analyses, a global assessment on the dominant features of GRACE variability is still lacking. To address this, we survey key features of temporal variability in the GRACE record by decomposing gridded time series of monthly equivalent water height into linear trends, inter-annual, seasonal, and subseasonal (intra-annual) components. We provide an overview of the relative importance and spatial distribution of these components globally. A correlation analysis with precipitation and temperature reveals that both the inter-annual and subseasonal anomalies are tightly related to fluctuations in the atmospheric forcing. As a novelty, we show that for large regions of the world high-frequency anomalies in the monthly GRACE signal, which have been partly interpreted as noise, can be statistically reconstructed from daily precipitation once an adequate averaging filter is applied. This filter integrates the temporally decaying contribution of precipitation to the storage changes in any given month, including earlier precipitation. Finally, we also survey extreme dry anomalies in the GRACE record and relate them to documented drought events. This global assessment sets regional studies in a broader context and reveals phenomena that had not been documented so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelen S, Seitz F (2013) Relating satellite gravimetry data to global soil moisture products via data harmonization and correlation analysis. Remote Sens Environ 136:89–98. doi:10.1016/j.rse.2013.04.012

    Google Scholar 

  • Abelen S, Seitz F, Abarca-del-Rio R, Güntner A (2015) Droughts and floods in the La Plata basin in soil moisture data and GRACE. Remote Sens 7:7324–7349. doi:10.3390/rs70607324

    Google Scholar 

  • Ahmed M et al (2011) Integration of GRACE (gravity recovery and climate experiment) data with traditional data sets for a better understanding of the time-dependent water partitioning in African watersheds. Geology 39:479–482. doi:10.1130/G31812.1

    Google Scholar 

  • Ahmed M, Sultan M, Wahr J, Yan E (2014) The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth-Sci Rev 136:289–300. doi:10.1016/j.earscirev.2014.05.009

    Google Scholar 

  • Andersen OB, Seneviratne SI, Hinderer J, Viterbo P (2005) GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys Res Lett 32:L18405. doi:10.1029/2005GL023574

    Google Scholar 

  • Arendt A, Luthcke S, Gardner A, O’Neel S, Hill D, Moholdt G, Abdalati W (2013) Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers. J Glaciol 59:913–924. doi:10.3189/2013JoG12J197

    Google Scholar 

  • Awange JL, Sharifi MA, Ogonda G, Wickert J, Grafarend EW, Omulo MA (2008) The falling Lake Victoria water level: GRACE, TRIMM and CHAMP satellite analysis of the lake basin. Water Resour Manag 22:775–796. doi:10.1007/s11269-007-9191-y

    Google Scholar 

  • Barletta V, Bordoni A, Aoudia A, Sabadini R (2012) Squeezing more information out of time variable gravity data with a temporal decomposition approach. Global Planet Change 82–83:51–64. doi:10.1016/j.gloplacha.2011.11.010

    Google Scholar 

  • Baur O (2012) On the computation of mass-change trends from GRACE gravity field time-series. J Geodyn 61:120–128. doi:10.1016/j.jog.2012.03.007

    Google Scholar 

  • Becker M, Llovel W, Cazenave A, Güntner A, Crétaux J-F (2010) Recent hydrological behavior of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall observations. C R Geosci 342:223–233. doi:10.1016/j.crte.2009.12.010

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300

    Google Scholar 

  • Bergmann I, Ramillien G, Frappart F (2012) Climate-driven interannual ice mass evolution in Greenland. Global Planet Change 82–83:1–11. doi:10.1016/j.gloplacha.2011.11.005

    Google Scholar 

  • Beven KJ (2012) Rainfall-runoff modelling: the primer, 2nd edn. Wiley, Chichester. doi:10.1002/9781119951001

    Google Scholar 

  • Bonin JA, Bettadpur S, Tapley BD (2012) High-frequency signal and noise estimates of CSR GRACE RL04. J Geodesy 86:1165–1177. doi:10.1007/s00190-012-0572-5

    Google Scholar 

  • Chen JL, Tapley BD, Wilson CR (2006a) Alaskan mountain glacial melting observed by satellite gravimetry. Earth Planet Sci Lett 248:368–378. doi:10.1016/j.epsl.2006.05.039

    Google Scholar 

  • Chen JL, Wilson CR, Tapley BD (2006b) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313:1958–1960. doi:10.1126/science.1129007

    Google Scholar 

  • Chen JL, Wilson CR, Famiglietti JS, RodellM(2007a) Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity. J Geodesy 81:237–245. doi:10.1007/s00190-006-0104-2

    Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Blankenship DD, Ivins ER (2007b) Patagonia icefield melting observed by gravity recovery and climate experiment (GRACE). Geophys Res Lett 34:L22501. doi:10.1029/2007GL031871

  • Chen JL, Wilson CR, Tapley BD (2010a) The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour Res 46:W12526. doi:10.1029/2010WR009383

  • Chen JL, Wilson CR, Tapley BD, Longuevergne L, Yang ZL, Scanlon BR (2010b) Recent La Plata basin drought conditions observed by satellite gravimetry. J Geophys Res-Atmos 115:D22108. doi:10.1029/2010JD014689

  • Chen J, Li J, Zhang Z, Ni S (2014) Long-term groundwater variations in Northwest India from satellite gravity measurements. Global Planet Change 116:130–138. doi:10.1016/j.gloplacha.2014.02.007

    Google Scholar 

  • Chen J, Famiglietti JS, Scanlon BR, Rodell M (2015) Groundwater storage changes: present status from GRACE observations. Surv Geophys. doi:10.1007/s10712-015-9332-4

    Google Scholar 

  • Cheng M, Ries J, Tapley B (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res-Solid Earth 116:B01409. doi:10.1029/2010JB000850

  • Chew CC, Small EE (2014) Terrestrial water storage response to the 2012 drought estimated from GPS vertical position anomalies. Geophys Res Lett 41:6145–6151. doi:10.1002/2014GL061206

    Google Scholar 

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6:3–73

    Google Scholar 

  • Crowley JW, Mitrovica JX, Bailey RC, Tamisiea ME, Davis JL (2006) Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys Res Lett 33:L19402. doi:10.1029/2006GL027070

  • Davidson EA et al (2012) The Amazon basin in transition. Nature 481:321–328. doi:10.1038/nature10717

    Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Google Scholar 

  • Döll P, Fritsche M, Eicker A, Müller Schmied H (2014a) Seasonal water storage variations as impacted by water abstractions: comparing the output of a global hydrological model with GRACE and GPS observations. Surv Geophys 35:1311–1331. doi:10.1007/s10712-014-9282-2

    Google Scholar 

  • Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A (2014b) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50:5698–5720. doi:10.1002/2014WR015595

    Google Scholar 

  • Duan X, Guo J, Shum C, van der Wal W (2009) On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions. J Geodesy 83:1095–1106. doi:10.1007/s00190-009-0327-0

    Google Scholar 

  • Dufresne JL et al (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Climate Dyn 40:2123–2165. doi:10.1007/s00382-012-1636-1

    Google Scholar 

  • Eicker A, Schumacher M, Kusche J, Doll P, Muller Schmied H (2014) Calibration/data assimilation approach for integrating GRACE data into the water GAP global hydrology model (WGHM) using an ensemble Kalman filter: first results. Surv Geophys 35:1285–1309. doi:10.1007/s10712-014-9309-8

    Google Scholar 

  • Famiglietti JS (2014) The global groundwater crisis. Nat Climate Change 4:945–948. doi:10.1038/nclimate2425

    Google Scholar 

  • Famiglietti JS et al (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. doi:10.1029/2010GL046442

    Google Scholar 

  • Feng W, Zhong M, Lemoine J-M, Biancale R, Hsu H-T, Xia J (2013) Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements. Water Resour Res 49:2110–2118. doi:10.1002/wrcr.20192

    Google Scholar 

  • Forootan E, Kusche J (2012) Separation of global time-variable gravity signals into maximally independent components. J Geodesy 86:477–497. doi:10.1007/s00190-011-0532-5

    Google Scholar 

  • Forootan E et al (2014a) Multivariate prediction of total water storage changes over West Africa from multisatellite data. Surv Geophys 35:913–940. doi:10.1007/s10712-014-9292-0

    Google Scholar 

  • Forootan E et al (2014b) Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. Remote Sens Environ 140:580–595. doi:10.1016/j.rse.2013.09.025

    Google Scholar 

  • Frappart F, Ramillien G (2012) Contribution of GRACE satellite gravimetry in global and regional hydrology, and in ice sheets mass balance, water resources management and modeling. In: Purna N (ed) Water resources management and modeling. InTech, p 322. doi:10.5772/34212

    Google Scholar 

  • Frappart F, Ramillien G, Biancamaria S, Mognard NM, Cazenave A (2006) Evolution of high-latitude snow mass derived from the GRACE gravimetry mission (2002–2004). Geophys Res Lett 33:L02501. doi:10.1029/2005GL024778

  • Frappart F, Ramillien G, Famiglietti JS (2011a) Water balance of the Arctic drainage system using GRACE gravimetry products. Int J Remote Sens 32:431–453. doi:10.1080/01431160903474954

    Google Scholar 

  • Frappart F, Ramillien G, Leblanc M, Tweed SO, Bonnet M-P, Maisongrande P (2011b) An independent component analysis filtering approach for estimating continental hydrology in the GRACE gravity data. Remote Sens Environ 115:187–204. doi:10.1016/j.rse.2010.08.017

    Google Scholar 

  • Frappart F, Papa F, da Silva JS, Ramillien G, Prigent C, Seyler F, Calmant S (2012) Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environ Res Lett 7:044010. doi:10.1088/1748-9326/7/4/044010

    Google Scholar 

  • Frappart F, Ramillien G, Ronchail J (2013) Changes in terrestrial water storage versus rainfall and discharges in the Amazon basin. Int J Climatol 33:3029–3046. doi:10.1002/joc.3647

    Google Scholar 

  • García-García D, Ummenhofer CC, Zlotnicki V (2011) Australian watermass variations fromGRACE data linked to Indo-Pacific climate variability. Remote Sens Environ 115:2175–2183. doi:10.1016/j.rse.2011.04.007

    Google Scholar 

  • Gardner A et al (2013) A reconciled estimate of glacier contributions to Sea level rise: 2003 to 2009. Science 340:852–857. doi:10.1126/science.1234532

    Google Scholar 

  • Geruo A, Wahr J, Zhong S (2013) Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys J Int 192:557–572. doi:10.1093/gji/ggs030

    Google Scholar 

  • Gudmundsson L, Seneviratne SI (2015) European drought trends. Proc Int Assoc Hydrol Sci 369:75–79. doi:10.5194/piahs-369-75-2015

    Google Scholar 

  • Gudmundsson L, Tallaksen LM, Stahl K, Fleig AK (2011) Low-frequency variability of European runoff. Hydrol Earth Syst Sci 15:2853–2869. doi:10.5194/hess-15-2853-2011

    Google Scholar 

  • Güntner A (2008) Improvement of global hydrological models using GRACE data. Surv Geophys 29:375–397. doi:10.1007/s10712-008-9038-y

    Google Scholar 

  • Güntner A, Schmidt R, Döll P (2007a) Supporting large-scale hydrogeological monitoring and modelling by time-variable gravity data. Hydrogeol J 15:167–170. doi:10.1007/s10040-006-0089-1

    Google Scholar 

  • Güntner A, Stuck J, Werth S, Düll P, Verzano K, Merz B (2007b) A global analysis of temporal and spatial variations in continental water storage. Water Resour Res 43:W05416. doi:10.1029/2006WR005247

  • Hamed KH (2009) Exact distribution of the Mann-Kendall trend test statistic for persistent data. J Hydrol 365:86–94. doi:10.1016/j.jhydrol.2008.11.024

    Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann–Kendall trend test for autocorrelated data. J Hydrol 204:182–196. doi:10.1016/S0022-1694(97)00125-X

    Google Scholar 

  • Han S-C, Shum CK, Bevis M, Ji C, Kuo C-Y (2006) Crustal dilatation observed by GRACE after the 2004 Sumatra–Andaman earthquake. Science 313:658–662. doi:10.1126/science.1128661

    Google Scholar 

  • Han S-C, Sauber J, Riva R (2011) Contribution of satellite gravimetry to understanding seismic source processes of the 2011 Tohoku-Oki earthquake. Geophys Res Lett 38:L24312. doi:10.1029/2011GL049975

    Google Scholar 

  • Han S-C, Riva R, Sauber J, Okal E (2013) Source parameter inversion for recent great earthquakes from a decade-long observation of global gravity fields. J Geophys Res-Solid Earth 118:1240–1267. doi:10.1002/jgrb.50116

    Google Scholar 

  • Hassan AA, Jin S (2014) Lake level change and total water discharge in East Africa Rift Valley from satellite-based observations. Global Planet Change 117:79–90. doi:10.1016/j.gloplacha.2014.03.005

    Google Scholar 

  • Hinderer J, Andersen O, Lemoine F, Crossley D, Boy J-P (2006) Seasonal changes in the European gravity field from GRACE: a comparison with superconducting gravimeters and hydrology model predictions. J Geodyn 41:59–68. doi:10.1016/j.jog.2005.08.037

    Google Scholar 

  • Hoerling M et al (2013) Causes and predictability of the 2012 Great Plains drought. B Am Meteorol Soc 95:269–282. doi:10.1175/BAMS-D-13-00055.1

    Google Scholar 

  • Houborg R, Rodell M, Li B, Reichle R, Zaitchik BF (2012) Drought indicators based on model-assimilated gravity recovery and climate experiment (GRACE) terrestrial water storage observations. Water Resour Res 48:W07525. doi:10.1029/2011WR011291

  • Ivins ER, Watkins MM, Yuan D-N, Dietrich R, Casassa G, Rülke A (2011) On-land ice loss and glacial isostatic adjustment at the Drake passage: 2003–2009. J Geophys Res Solid Earth 116:B02403. doi:10.1029/2010JB007607

  • Jiménez Cisneros BE et al. (2014) Freshwater resources. In: Field CB et al. (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of workinggroup II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 229–269. doi:10.1017/cbo9781107415379.008

  • Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50:2679–2692. doi:10.1002/2013WR014633

    Google Scholar 

  • Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geodesy 81:733–749. doi:10.1007/s00190-007-0143-3

    Google Scholar 

  • Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48:W04531. doi:10.1029/2011WR011453

  • Larsen CF, Burgess E, Arendt AA, O’Neel S, Johnson AJ, Kienholz C (2015) Surface melt dominates Alaska glacier mass balance. Geophys Res Lett 42:5902–5908. doi:10.1002/2015GL064349

    Google Scholar 

  • Long D, Scanlon BR, Longuevergne L, Sun AY, Fernando DN, Save H (2013) GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys Res Lett 40:3395–3401. doi:10.1002/grl.50655

    Google Scholar 

  • Long D, Longuevergne L, Scanlon BR (2015) Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resour Res 51:2574–2594. doi:10.1002/2014WR016853

    Google Scholar 

  • Longuevergne L, Scanlon B, Wilson C (2010) GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46:W11517. doi:10.1029/2009WR008564

  • Morishita Y, Heki K (2008) Characteristic precipitation patterns of El Niño/La Niña in time-variable gravity fields by GRACE. Earth Planet Sci Lett 272:677–682. doi:10.1016/j.epsl.2008.06.003

    Google Scholar 

  • Mudelsee M (2014) Climate time series analysis: classical statistical and bootstrap methods. Atmospheric and oceanographic sciences library, vol 51, 2nd edn. Springer, New York. doi:10.1007/978-90-481-9482-7

    Google Scholar 

  • Mueller B, Seneviratne SI (2012) Hot days induced by precipitation deficits at the global scale. Proc Natl Acad Sci 109:12398–12403. doi:10.1073/pnas.1204330109

    Google Scholar 

  • Papa F, Güntner A, Frappart F, Prigent C, Rossow WB (2008) Variations of surface water extent and water storage in large river basins: a comparison of different global data sources. Geophys Res Lett 35:L11401. doi:10.1029/2008GL033857

  • Phillips T, Nerem RS, Fox-Kemper B, Famiglietti JS, Rajagopalan B (2012) The influence of ENSO on global terrestrial water storage using GRACE. Geophys Res Lett 39:L16705. doi:10.1029/2012GL052495

    Google Scholar 

  • Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158:813–826. doi:10.1111/j.1365-246X.2004.02328.x

    Google Scholar 

  • Ramillien G, Frappart F, CazenaveA, Güntner A (2005) Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth Planet Sci Lett 235:283–301. doi:10.1016/j.epsl.2005.04.005

    Google Scholar 

  • Ramillien G, Lombard A, Cazenave A, Ivins ER, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global Planet Change 53:198–208. doi:10.1016/j.gloplacha.2006.06.003

    Google Scholar 

  • Ramillien G, Famiglietti JS, Wahr J (2008) Detection of continental hydrology and glaciology signals from GRACE: a review. Surv Geophys 29:361–374. doi:10.1007/s10712-008-9048-9

    Google Scholar 

  • Ramillien G, Frappart F, Seoane L (2014) Application of the regional water mass variations from GRACE satellite gravimetry to large-scale water management in Africa. Remote Sens 6:7379–7405. doi:10.3390/rs6087379

    Google Scholar 

  • Rangelova E, van der Wal W, Braun A, Sideris MG, Wu P (2007) Analysis of gravity recovery and climate experiment time-variable mass redistribution signals over North America by means of principal component analysis. J Geophys Res-Earth 112:F03002. doi:10.1029/2006JF000615

  • Rangelova E, van der Wal W, Sideris MG, Wu P (2010) Spatiotemporal analysis of the GRACE-derived mass variations in North America by means of multi-channel singular spectrum analysis. In: Mertikas SP (ed) Gravity, geoid and earth observation, vol 135. International association of geodesy symposia.

    Google Scholar 

  • Reager JT, Thomas BF, Famiglietti JS (2014) River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat Geosci 7:588–592. doi:10.1038/ngeo2203

    Google Scholar 

  • Richey AS, Thomas BF, Lo M-H, Famiglietti JS, Swenson S, Rodell M (2015a) Uncertainty in global groundwater storage estimates in a total groundwater stress framework. Water Resour Res 51:5198–5216. doi:10.1002/2015WR017351

    Google Scholar 

  • Richey AS et al (2015b) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5238. doi:10.1002/2015WR017349

    Google Scholar 

  • Rieser D, Kuhn M, Pail R, Anjasmara IM, Awange J (2010) Relation between GRACE-derived surface mass variations and precipitation over Australia. Aust J Earth Sci 57:887–900. doi:10.1080/08120099.2010.512645

    Google Scholar 

  • Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J Hydrol 263:245–256. doi:10.1016/S0022-1694(02)00060-4

    Google Scholar 

  • Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004) Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett 31:L20504. doi:10.1029/2004GL020873

  • Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15:159–166. doi:10.1007/s10040-006-0103-7

    Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi:10.1038/nature08238

    Google Scholar 

  • Sakumura C, Bettadpur S, Bruinsma S (2014) Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys Res Lett 41:1389–1397. doi:10.1002/2013GL058632

    Google Scholar 

  • Sasgen I et al (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet Sci Lett 333–334:293–303. doi:10.1016/j.epsl.2012.03.033

    Google Scholar 

  • Schmeer M, Schmidt M, Bosch W, Seitz F (2012) Separation of mass signals within GRACE monthly gravity field models by means of empirical orthogonal functions. J Geodyn 59–60:124–132. doi:10.1016/j.jog.2012.03.001

    Google Scholar 

  • Schmidt R et al (2006) GRACE observations of changes in continental water storage. Global Planet Change 50:112–126. doi:10.1016/j.gloplacha.2004.11.018

    Google Scholar 

  • Schmidt R, Flechtner F, Meyer U, Neumayer KH, Dahle C, König R, Kusche J (2008a) Hydrological signals observed by the GRACE satellites. Surv Geophys 29:319–334. doi:10.1007/s10712-008-9033-3

    Google Scholar 

  • Schmidt R, Petrovic S, Güntner A, Barthelmes F, Wünsch J, Kusche J (2008b) Periodic components of water storage changes from GRACE and global hydrology models. J Geophys Res-Solid Earth 113:B08419. doi:10.1029/2007JB005363

  • Schrama EJO, Wouters B, Lavallée DA (2007) Signal and noise in gravity recovery and climate experiment (GRACE) observed surface mass variations. J Geophys Res-Solid Earth 112:B08407. doi:10.1029/2006JB004882

  • Seitz F, Schmidt M, Shum CK (2008) Signals of extreme weather conditions in Central Europe in GRACE 4-D hydrological mass variations. Earth Planet Sci Lett 268:165–170. doi:10.1016/j.epsl.2008.01.001

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389. doi:10.2307/2285891

    Google Scholar 

  • Seneviratne SI et al (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci Rev 99:125–161. doi:10.1016/j.earscirev.2010.02.004

    Google Scholar 

  • Seo KW, Wilson CR, Famiglietti JS, Chen JL, Rodell M (2006) Terrestrial water mass load changes from gravity recovery and climate experiment (GRACE). Water Resour Res 42:W05417. doi:10.1029/2005WR004255

  • Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res-Atmos 115:D01110. doi:10.1029/2009JD012442

  • Singh A, Seitz F, Schwatke C (2012) Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry. Remote Sens Environ 123:187–195. doi:10.1016/j.rse.2012.01.001

    Google Scholar 

  • Steffen H, Petrovic S, Müller J, Schmidt R, Wünsch J, Barthelmes F, Kusche J (2009) Significance of secular trends of mass variations determined from GRACE solutions. J Geodyn 48:157–165. doi:10.1016/j.jog.2009.09.029

    Google Scholar 

  • Swenson SC, Milly PCD (2006) Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Water Resour Res 42:W03201. doi:10.1029/2005WR004628

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402

    Google Scholar 

  • Swenson SC, Wahr J (2009) Monitoring the water balance of Lake Victoria, East Africa, from space. J Hydrol 370:163–176. doi:10.1016/j.jhydrol.2009.03.008

    Google Scholar 

  • Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res-Solid Ea 113:B08410. doi:10.1029/2007JB005338

  • Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:W02433. doi:10.1029/2006WR005779

  • Tamisiea ME, Mitrovica JX, Davis JL (2007) GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science 316:881–883. doi:10.1126/science.1137157

    Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004a) GRACE measurements of mass variability in the Earth System. Science 305:503–505. doi:10.1126/science.1099192

    Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004b) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

    Google Scholar 

  • Thomas AC, Reager JT, Famiglietti JS, Rodell M (2014) A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41:1537–1545. doi:10.1002/2014GL059323

    Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi:10.1029/2009GL040222

  • Velicogna I, Wahr J (2006) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331. doi:10.1038/nature05168

    Google Scholar 

  • Velicogna I, Wahr J (2013) Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys Res Lett 40:3055–3063. doi:10.1002/grl.50527

    Google Scholar 

  • Velicogna I, Tong J, Zhang T, Kimball J (2012) Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE. Geophys Res Lett 39:L09403. doi:10.1029/2012GL051623

    Google Scholar 

  • Velicogna I, Sutterley TC, van den Broeke MR (2014) Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys Res Lett 41:8130–8137. doi:10.1002/2014GL061052

    Google Scholar 

  • Ventura V, Paciorek CJ, Risbey JS (2004) Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J Climate 17:4343–4356. doi:10.1175/3199.1

    Google Scholar 

  • Vey S, Steffen H, Muller J, Boike J (2013) Inter-annual water mass variations from GRACE in central Siberia. J Geodesy 87:287–299. doi:10.1007/s00190-012-0597-9

    Google Scholar 

  • Voss KA, Famiglietti JS, Lo M, de Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49:904–914. doi:10.1002/wrcr.20078

    Google Scholar 

  • Wahr J (2015) Time-variable gravity from satellites. In: Schubert G (ed) Treatise on geophysics, 2nd edn. Elsevier, Oxford, pp 193–213. doi:10.1016/B978-0-444-53802-4.00065-8

    Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31:L11501. doi:10.1029/2004GL019779

    Google Scholar 

  • Wang H et al (2013) Increased water storage in North America and Scandinavia from GRACE gravity data. Nat Geosci 6:38–42. doi:10.1038/ngeo1652

    Google Scholar 

  • Washington R, James R, Pearce H, Pokam WM, Moufouma-Okia W (2013) Congo Basin rainfall climatology: can we believe the climate models? Philos T R Soc B. doi:10.1098/rstb.2012.0296

    Google Scholar 

  • Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179:1499–1515. doi:10.1111/j.1365-246X.2009.04355.x

  • Wilks DS (2006) On “field significance” and the false discovery rate. J Appl Meteorol Clim 45:1181–1189. doi:10.1175/JAM2404.1

    Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences. international geophysics series, vol 100, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Wouters B, Chambers D, Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20501. doi:10.1029/2008GL034816

  • Wouters B, Bonin JA, Chambers DP, Riva REM, Sasgen I, Wahr J (2014) GRACE, time-varying gravity, Earth system dynamics and climate change. Rep Prog Phys. doi:10.1088/0034-4885/77/11/116801

    Google Scholar 

  • Wu X et al (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci 3:642–646. doi:10.1038/ngeo938

    Google Scholar 

  • Xavier L, Becker M, Cazenave A, Longuevergne L, Llovel W, Filho OCR (2010) Interannual variability in water storage over 2003–2008 in the Amazon Basin from GRACE space gravimetry, in situ river level and precipitation data. Remote Sens Environ 114:1629–1637. doi:10.1016/j.rse.2010.02.005

    Google Scholar 

  • Yue S, Wang C (2004) The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18:201–218. doi:10.1023/B:WARM.0000043140.61082.60

    Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829. doi:10.1002/hyp.1095

    Google Scholar 

  • Zaitchik B, Rodell M, Reichle R (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River basin. J Hydrometeorol 9:535–548. doi:10.1175/2007JHM951.1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Humphrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Humphrey, V., Gudmundsson, L., Seneviratne, S.I. (2016). Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. In: Cazenave, A., Champollion, N., Benveniste, J., Chen, J. (eds) Remote Sensing and Water Resources. Space Sciences Series of ISSI, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-32449-4_8

Download citation

Publish with us

Policies and ethics