Skip to main content

Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects

  • Chapter
  • First Online:
Remote Sensing and Water Resources

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 55))

Abstract

Except for frozen water in ice and glaciers, groundwater is the world’s largest distributed store of freshwater and has strategic importance to global food and water security. In this paper, the most recent advances quantifying groundwater depletion (GWD) are comprehensively reviewed. This paper critically evaluates the recently advanced modeling approaches estimating GWD at regional and global scales, and the evidence of feedbacks to the Earth system including sea-level rise associated with GWD. Finally, critical challenges and opportunities in the use of groundwater are identified for the adaption to growing food demand and uncertain climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci 5:853–861. doi:10.1038/ngeo1617

    Google Scholar 

  • Ahmad M-D, Bastiaanssen WGM, Feddes RA (2005) A new technique to estimate net groundwater use across large irrigated areas by combining remote sensing and water balance approaches, Rechna Doab, Pakistan. Hydrogeol J 13:653–664. doi:10.1007/s10040-004-0394-5

    Google Scholar 

  • Alcamo J, Henrichs T (2002) Critical regions: a model-based estimation of world water resources sensitive to global changes. Aquat Sci 64:352–362. doi:10.1007/PL00012591

    Google Scholar 

  • Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003a) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48:317–337. doi:10.1623/hysj.48.3.317.45290

    Google Scholar 

  • Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003b) Global estimation of water withdrawals and availability under current and ‘‘business as usual’’ conditions. Hydrol Sci J 48:339–348. doi:10.1623/hysj.48.3.339.45278

    Google Scholar 

  • Alcamo J, Flörke M, Märker M (2007) Future long-term changes in global water resources driven by socioeconomic and climatic changes. Hydrol Sci J 52:247–275. doi:10.1623/hysj.52.2.247

    Google Scholar 

  • Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources, Circular 1186, Tech. Rep., Denver, CO, U.S. Geological Survey (USGS)

    Google Scholar 

  • Arnell NW (1999) Climate change and global water resources. Global Environ Chang 9:31–49. doi:10.1016/S0959-3780(99)00017-5

    Google Scholar 

  • Arnell NW (2004) Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environ Chang 14:31–52. doi:10.1016/j.gloenvcha.2003.10.006

    Google Scholar 

  • Biemans H, Haddeland I, Kabat P, Ludwig F, Hutjes RWA, Heinke J, von Bloh W, Gerten D (2011) Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour Res 47:W03509. doi:10.1029/2009WR008929

  • Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century. Global Chang Biol 13:679–706. doi:10. 1111/j.1365-2486.2006.01305.x

    Google Scholar 

  • Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model? Ground Water 40:340–345. doi:10.1111/j.1745-6584.2002.tb02511.x

    Google Scholar 

  • Bruinsma J (2003) World agriculture: towards 2015/2030—an FAO perspective. Earthscan, London, p 444

    Google Scholar 

  • Cao G, Zheng C, Scanlon BR, Liu J, Li W (2013) Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour Res. doi:10.1029/2012WR011899

    Google Scholar 

  • Castle SL, Thomas BF, Reager JT, Rodell M, Swenson SC, Famiglietti JS (2014) Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys Res Lett. doi:10.1002/2014GL061055

    Google Scholar 

  • CEDARE (2001) Regional strategy for the utilisation of the nubian sandstone aquifer system volume III: ground water model, Tech. Rep., Cent. for Environ. and Dev. for the Arab Reg. and Eur., Cairo, Egypt

    Google Scholar 

  • Chao BF, Wu YH, Li YS (2008) Impact of artificial reservoir water impoundment on global sea level. Science 320:212–214. doi:10.1126/science.1154580

    Google Scholar 

  • Cheema MJ, Immerzeel WW, Bastiaanssen WG (2014) Spatial quantification of groundwater abstraction in the irrigated Indus basin. Ground Water 52:25–36. doi:10.1111/gwat.12027

    Google Scholar 

  • Chen J, Famigliett JS, Scanlon BR, Rodell M (2015) Groundwater storage changes: present status from GRACE observations. Surv Geophys. doi:10.1007/s10712-015-9332-4

    Google Scholar 

  • Crosbie RS, McCallum JL, Walker GR, Chiew FHS (2012) Episodic recharge and climate change in the Murray-Darling Basin, Australia. Hydrogeol J 20:245–261. doi:10.1007/s10040-011-0804-4

    Google Scholar 

  • Dai A (2011) Drought under global warming: a review, WIREs Clim. Change 2:45–65. doi:10.1002/wcc.81

    Google Scholar 

  • Dai A (2013) Increasing drought under global warming: reconciling observed and model-simulated changes. Nat Clim Change 3:52–58. doi:10.1038/nclimate1633

    Google Scholar 

  • Dankers R, Arnell NW, Clark DB, Falloon PD, Fekete BM, Gosling SN, Heinke J, Kim H, Masaki Y, Satoh Y, Stacke T, Wada Y, Wisser D (2014) First look at changes in flood hazard in the inter-sectoral impact model intercomparison project ensemble. Proc Natl Acad Sci USA 111(9):3257–3261. doi:10.1073/pnas.1302078110

    Google Scholar 

  • Davie JCS, Falloon PD, Kahana R, Dankers R, Betts R, Portmann FT, Wisser D, Clark DB, Itoh A, Masaki Y, Nishina K, Fekete B, Tessler Z, Wada Y, Liu X, Tang Q, Hagemann S, Stacke T, Pavlick R, Schaphoff S, Gosling SN, Franssen W, Arnell N (2013) Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP. Earth Syst Dyn 4:359–374. doi:10.5194/esd-4-359-2013

    Google Scholar 

  • De Graaf IEM, van Beek LPH, Wada Y, Bierkens MFP (2014a) Dynamic attribution of global water demand to surface water and groundwater resources: effects of abstractions and return flows on river discharges. Adv Water Resour 64:21–33. doi:10.1016/j.advwatres.2013.12.002

    Google Scholar 

  • De Graaf IEM, Sutanudjaja EH, van Beek LPH, Bierkens MFP (2014b) A high resolution global scale groundwater model. Hydrol Earth Syst Sci Discuss 11:5217–5250. doi:10.5194/hessd-11-5217-2014

    Google Scholar 

  • DeAngelis A, Dominguez F, Fan Y, Robock A, Kustu MD, Robinson D (2010) Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J Geophys Res 115:D15115. doi:10.1029/2010JD013892

  • Dirmeyer PA, Gao X, Guo Z, Oki T, Hanasaki N (2006) GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull Am Meteor Soc 87:1381–1397. doi:10.1175/BAMS-87-10-1381

    Google Scholar 

  • Döll P (2002) Impact of climate change and variability on irrigation requirements: a global perspective. Clim Chang 54(3):269–293. doi:10.1023/A:1016124032231

    Google Scholar 

  • Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a globalscale assessment. Environ Res Lett 4:036006. doi:10.1088/1748-9326/4/3/035006

    Google Scholar 

  • Döll P, Fiedler F (2008) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sci 12:863–885. doi:10.5194/hess-12-863-2008

    Google Scholar 

  • Döll P, Siebert S (2002) Global modeling of irrigation water requirements. Water Resour Res. doi:10.1029/2001WR000355

    Google Scholar 

  • Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134. doi:10.1016/S0022-1694(02)00283-4

    Google Scholar 

  • Döll P, Fiedler K, Zhang J (2009) Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol Earth Syst Sci 13:2413–2432. doi:10.5194/hess-13-2413-2009

    Google Scholar 

  • Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59–60:143–156. doi:10.1016/j.jog.2011.05.001

    Google Scholar 

  • Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50:5698–5720. doi:10.1002/2014WR015595

    Google Scholar 

  • Döll P, Douville H, Güntner A, Müller Schmied H, Wada Y (2015) Modelling freshwater resources at the global scale: challenges and prospects. Surv Geophys. doi:10.1007/s10712-015-9343-1

    Google Scholar 

  • Edmunds M (2003) Renewable and non-renewable groundwater in semi-arid and arid regions. In: Wood (ed) Water resources perspectives: evaluation, management and policy, developments in water science 50, Elsevier, Amsterdam, pp 265–280

    Google Scholar 

  • Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, Glotter M, Flörke M, Wada Y, Eisner S, Folberth C, Foster I, Gosling SN, Haddeland I, Khabarov N, Ludwig F, Masaki Y, Olin S, Rosenzweig C, Ruane AC, Satoh Y, Schmid E, Stacke T, Tang Q, Wisser D (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc Natl Acad Sci USA 111(9):3239–3244. doi:10.1073/pnas.1222474110

    Google Scholar 

  • Fader M, Rost S, Müller C, Gerten D (2010) Virtual water content of temperate cereals and maize: present and potential future patterns. J Hydrol 384:218–231. doi:10.1016/j.jhydrol.2009.12.011

    Google Scholar 

  • Fader M, Gerten D, Krause M, Lucht W, CramerW(2013) Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints. Environ Res Lett 8:014046. doi:10.1088/1748-9326/8/1/014046

    Google Scholar 

  • Falkenmark M, Kijne JW, Taron B, Murdoch G, Sivakumar MVK, Craswell E (1997) Meeting water requirements of an expanding world population [and discussion]. Philos Trans R Soc Lond B 352:929–936. doi:10.1098/rstb.1997.0072

    Google Scholar 

  • Falkenmark M, Rockström J, Karlberg L (2009) Present and future water requirements for feeding humanity. Food Sec 1:59–69. doi:10.1007/s12571-008-0003-x

    Google Scholar 

  • Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4:945–948. doi:10.1038/nclimate2425

    Google Scholar 

  • Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. doi:10.1029/2010GL046442

    Google Scholar 

  • Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339:940–943. doi:10.1126/science.122988

  • Feng W, Zhong M, Lemoine J-M, Biancale R, Hsu H-T, Xia J (2013) Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour Res 49:2110–2118. doi:10.1002/wrcr.20192

    Google Scholar 

  • Feyen L, Dankers R (2009) Impact of global warming on streamflow drought in Europe. J Geophys Res 114:D17116. doi:10.1029/2008JD011438

  • Fischer G, Tubiello FN, van Velthuizen H, Wiberg DA (2007) Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080. Technol Forecast Soc Chang 74:1083–1107. doi:10.1016/j.techfore.2006.05.021

    Google Scholar 

  • Fishman RM, Siegfried T, Raj P, Modi V, Lall U (2011) Over-extraction from shallow bedrock versus deep alluvial aquifers: reliability versus sustainability considerations for India’s groundwater irrigation. Water Resour Res 47: W00L05. doi:10.1029/2011WR010617

  • Flörke M, Kynast E, Bärlund I, Eisner S, Wimmer F, Alcamo J (2013) Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Global Environ Chang 23:144–156. doi:10.1016/j.gloenvcha.2012.10.018

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. doi:10.1038/nature10452

    Google Scholar 

  • Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Phil Trans Roy Soc Lond B Biol Sci 358:1957–1972. doi:10.1098/rstb.2003.1380

    Google Scholar 

  • Foster S, Loucks DP (eds) (2006) Non-renewable groundwater resources: a guidebook on socially-sustainable management for water-policy makers, IHP-VI, series on Groundwater No. 10, UNESCO, Paris, France

    Google Scholar 

  • Foster S, Garduno H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary aquifer of the north china plain—assessing and achieving groundwater resource sustainability. Hydrogeol J 12:81–93. doi:10.1007/s10040-003-0300-6

    Google Scholar 

  • Gain AK, Wada Y (2014) Assessment of future water scarcity at different spatial and temporal scales of the Brahmaputra River Basin. Water Resour Manage 28:999–1012. doi:10.1007/s11269-014-0530-5

    Google Scholar 

  • Gerten D, Schaphoff S, Lucht W (2007) Potential future changes in water limitation of the terrestrial biosphere. Clim Chang 80:277–299. doi:10.1007/s10584-006-9104-8

    Google Scholar 

  • Gerten D, Heinke J, Hoff H, Biemans H, Fader M, Waha K (2011) Global water availability and requirements for future food production. J Hydrometeorol 12:885–899. doi:10.1175/2011JHM1328.1

    Google Scholar 

  • Gerten D, Hoff H, Rockström J, Jägermeyr J, Kummu M, Pastor AV (2013) Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Curr Opin Environ Sustain 5:551–558. doi:10.1016/j.cosust.2013.11.001

    Google Scholar 

  • Gleeson T, Wada Y (2013) Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint. Environ Res Lett 8:044010. doi:10.1088/1748-9326/8/4/044010

    Google Scholar 

  • Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y, Taniguchi M, Van der Steen J (2012a) Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Groundwater 50:19–26. doi:10.1111/j.1745-6584.2011.00825.x

    Google Scholar 

  • Gleeson T, Wada Y, Bierkens MFP, van Beek LPH (2012b) Water balance of global aquifers revealed by groundwater footprint. Nature 488:197–200. doi:10.1038/nature11295

    Google Scholar 

  • Gleick PH (2000) The changing water paradigm: a look at twenty-first century water resources development. Water Int 25:127–138. doi:10.1080/02508060008686804

    Google Scholar 

  • Gleick PH (2003) Global freshwater resources: soft-path solutions for the 21st century. Science 302:1524–1528. doi:10.1126/science.1089967

    Google Scholar 

  • Gleick PH (2010) Roadmap for sustainable water resources in southwestern North America. Proc Natl Acad Sci USA 107:21300–21305. doi:10.1073/pnas.1005473107

    Google Scholar 

  • Gleick PH, Christian-Smith J, Cooley H (2010) Water-use efficiency and productivity: rethinking the basin approach. Water Int. 36:784–798. doi:10.1080/02508060.2011.631873

    Google Scholar 

  • Gornitz V (1995) Sea-level rise: a review of recent past and near-future trends. Earth Surf Process Landforms 20:7–20. doi:10.1002/esp.3290200103

    Google Scholar 

  • Gornitz V (2001) In: Douglas BC, Kearney MS, Leatherman SP (eds) Sea level rise: history and consequences. Academic Press, San Diego, pp 97–119

    Google Scholar 

  • Gosling SN, Bretherton D, Haines K, Arnell NW (2010) Global hydrology modelling and uncertainty: running multiple ensembles with a campus grid. Phil Trans R Soc A 368:4005–4021. doi:10.1098/rsta. 2010.0164

  • Gosling SN, Taylor RG, Arnell NW, Todd MC (2011) A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol Earth Syst Sci 15:279–294. doi:10.5194/hess-15-279-2011

    Google Scholar 

  • Gregory JM, White NJ, Church JA, Bierkens MFP, Box JE, van den Broeke MR, Cogley JG, Fettweis X, Hanna E, Huybrechts P, Konikow LF, Leclercq PW, Marzeion B, Oerlemans J, Tamisiea ME, Wada Y, Wake LM, van de Wal RSW (2013) Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J Clim 26:4476–4499. doi:10.1175/JCLI-D-12-00319.1

    Google Scholar 

  • Haddeland I, Skaugen T, Lettenmaier DP (2006) Anthropogenic impacts on continental surface water fluxes. Geophys Res Lett 33:L08406. doi:10.1029/2006GL026047

  • Haddeland I, Clark D, Franssen WHP, Ludwig F, Voss F, Arnell NW, Bertrand N, Best M, Folwell S, Gerten D, Gomes S, Gosling S, Hagemann S, Hanasaki N, Harding R, Heinke J, Kabat P, Koirala S, Oki T, Polcher J, Stacke T, Viterbo P, Weedon GP, Yeh P (2011) Multimodel estimate of the global terrestrial water balance: setup and first results. J Hydrometeor 12:869–884. doi:10.1175/2011JHM1324.1

    Google Scholar 

  • Haddeland I,Heinke J, Biemans H, Eisner S, FlörkeM, Hanasaki N,Konzmann M, Ludwig F,MasakiY, Schewe J, Stacke T, Tessler Z, Wada Y,Wisser D (2014) Global water resources affected by human interventions and climate change. Proc Natl Acad Sci USA 111(9):3251–3256. doi:10.1073/pnas.1302078110

    Google Scholar 

  • Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K (2008a) An integrated model for the assessment of global water resources—part 1: model description and input meteorological forcing. Hydrol Earth Syst Sci 12:1007–1025. doi:10.5194/hess-12-1007-2008

    Google Scholar 

  • Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K (2008b) An integrated model for the assessment of global water resources—part 2: applications and assessments. Hydrol Earth Syst Sci 12:1027–1037. doi:10.5194/hess-12-1027-2008

    Google Scholar 

  • Hanasaki N, Inuzuka T, Kanae S, Oki T (2010) An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J Hydrol 384:232–244. doi:10.1016/j.jhydrol.2009.09.028

    Google Scholar 

  • Hanasaki N, Fujimori S, Yamamoto T, Yoshikawa S, Masaki Y, Hijioka Y, Kainuma M, Kanamori Y, Masui T, Takahashi K, Kanae S (2013a) A global water scarcity assessment under Shared Socioeconomic pathways—part 1: water use. Hydrol Earth Syst Sci 17:2375–2391. doi:10.5194/hess-17-2375-2013

    Google Scholar 

  • Hanasaki N, Fujimori S, Yamamoto T, Yoshikawa S, Masaki Y, Hijioka Y, Kainuma M, Kanamori Y, Masui T, Takahashi K, Kanae S (2013b) A global water scarcity assessment under shared socioeconomic pathways—part 2: water availability and scarcity. Hydrol Earth Syst Sci 17:2393–2413. doi:10.5194/hess-17-2393-2013

    Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U. S. Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. Open-File Rep. 00-92, U.S. Geol. Survey (USGS), Reston, VA

    Google Scholar 

  • Hoekstra AY (2009) Human appropriation of natural capital: a comparison of ecological footprint and water footprint analysis. Ecol Econ 68:1963–1974. doi:10.1016/j.ecolecon.2008.06.021

    Google Scholar 

  • Hoekstra AY, Mekonnen MM (2012) The water footprint of humanity. Proc Natl Acad Sci USA 109(9):3232–3237. doi:10.1073/pnas.1109936109

    Google Scholar 

  • Hoff H, Falkenmark M, Gerten D, Gordon L, Karlberg L, Rockström J (2010) Greening the global water system. J Hydrol 384:177–186. doi:10.1016/j.jhydrol.2009.06.026

    Google Scholar 

  • Hu Y, Moiwo JP, Yang Y, Han S, Yang Y (2010) Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain. J Hydrol 393:219–232. doi:10.1016/j.jhydrol.2010.08.017

    Google Scholar 

  • Huang Z, Pan Y, Gong H, Yeh PJ, Li X, Zhou D, Zhao W (2015) Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys Res Lett 42:1791–1799. doi:10.1002/2014GL062498

    Google Scholar 

  • Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518. doi:10.1038/nature10847

    Google Scholar 

  • Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350. doi:10.1038/nature11983

    Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen JQ, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu QZ, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954. doi:10.1038/nature09396

    Google Scholar 

  • Karami E, Hayati D (2005) Rural poverty and sustainability: the case of groundwater depletion in Iran. Asian J Water Environ Pollut 2:51–61

    Google Scholar 

  • Koirala S, Yeh PJ-F, Hirabayashi Y, Kanae S, Oki T (2014) Global-scale land surface hydrologic modeling with the representation of water table dynamics. J Geophys Res Atmos 119:75–89. doi:10.1002/2013JD020398

    Google Scholar 

  • Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38:L17401. doi:10.1029/2011GL048604

    Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320. doi:10.1007/s10040-004-0411-8

    Google Scholar 

  • Konzmann M, Gerten D, Heinke J (2013) Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model. Hydrol Sci J 58:1–18. doi:10.1080/02626667.2013.746495

    Google Scholar 

  • Kummu M, Ward PJ, de Moel H, Varis O (2010) Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ Res Lett 5:034006. doi:10.1088/1748-9326/5/3/034006

    Google Scholar 

  • Kummu M, de Moel H, Porkka M, Siebert S, Varis O, Ward PJ (2012) Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci Total Environ 438:477–489. doi:10.1016/j.scitotenv.2012.08.092

    Google Scholar 

  • Kummu M, Gerten D, Heinke J, Konzmann M, Varis O (2014) Climate-driven interannual variability of water scarcity in food production: a global analysis. Hydrol Earth Syst Sci 18:447–461. doi:10.5194/hess-18-447-2014

    Google Scholar 

  • Kustu M, Fan Y, Robock A (2010) Large-scale water cycle perturbation due to irrigation pumping in the US high plains: a synthesis of observed streamflow changes. J Hydrol 390:222–244. doi:10.1016/j.jhydrol. 2010.06.045

  • Kustu MD, Fan Y, Rodell M (2011) Possible link between irrigation in the U.S. High Plains and increased summer stream flow in the Midwest. Water Resour Res 47:W03522. doi:10.1029/2010WR010046

  • Lehner B, Döll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental integrated analysis. Clim Chang 75(273–299):2006. doi:10.1007/s10584-006-6338-4

    Google Scholar 

  • Lehner B, Reidy Liermann C, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Fron Ecol Environ 9:494–502. doi:10.1890/100125

    Google Scholar 

  • Lettenmaier DP, Milly PCD (2009) Land waters and sea level. Nat Geosci 2:452–454. doi:10.1038/ngeo567

    Google Scholar 

  • Liu J, Yang H (2010) Spatially explicit assessment of global consumptive water uses in cropland: green and blue water. J Hydrol 384:187–297. doi:10.1016/j.jhydrol.2009.11.024

    Google Scholar 

  • Llamas MR, Martínez-Santos P (2005) Intensive groundwater use: a silent revolution that cannot be ignored. Water Sci Technol 51:167–174

    Google Scholar 

  • Llamas R, Back W, Margat J (1992) Groundwater use: equilibrium between social benefits and potential environmental costs. Appl Hydrol 1:3–14. doi:10.1007/PL00010965

    Google Scholar 

  • Lo MH, Yeh PJ-F, Famiglietti JS (2008) Using baseflow to constrain water table depth simulations in the NCAR Community Land Model (CLM). Adv Water Resour 31:1552–1564. doi:10.1016/j.advwatres.2008.06.007

    Google Scholar 

  • Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46:W11517. doi:10.1029/2009WR008564

  • MacDonald GM (2010) Water, climate change, and sustainability in the southwest. Proc Natl Acad Sci USA 107:21256–21262. doi:10.1073/pnas.0909651107

    Google Scholar 

  • Manga M (1999) On the timescales characterizing groundwater discharge at springs. J Hydrol 219:56–69

    Google Scholar 

  • McGuire VL (2009) Water level changes in the High Plains Aquifer, predevelopment to 2007, 2005–06, and 2006–2007, U.S. Geol. Surv. Sci. Invest. Rep., 2009-5019, U.S. Geol. Surv., Reston, Virginia. http://pubs.usgs.gov/sir/2009/5019/

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being volume 2: scenarios. Island Press, Washington District of Columbia, p 515

    Google Scholar 

  • Nijssen B, Schnur R, Lettenmaier DP (2001a) Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J Clim 14:1790–1808. doi:10.1175/1520-0442(2001)014\1790:GREOSM[2.0.CO;2

  • Nijssen B, O’Donnell GM, Lettenmaier DP, Lohmann D, Wood EF (2001b) Predicting the discharge of global rivers. J Clim 14:3307–3323. doi:10.1175/1520-0442(2001)014/3307:PTDOGR[2.0.CO;2

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072. doi:10.1126/science.1128845

    Google Scholar 

  • Oki T, Agata Y, Kanae S, Saruhashi T, Yang D, Musiake K (2001) Global assessment of current water resources using total runoff-integrating pathways. Hydrol Sci J 46:983–996. doi:10.1080/02626660109492890

    Google Scholar 

  • Pala C (2006) Once a terminal case, the north aral sea shows new signs of life. Science 312:183. doi:10.1126/science.312.5771.183

    Google Scholar 

  • Pala C (2011) In northern aral sea, rebound comes with a big catch. Science 334:303. doi:10.1126/science.334.6054.303

    Google Scholar 

  • Pastor AV, Ludwig F, Biemans H, Hoff H, Kabat P (2013) Accounting for environmental flow requirements in global water assessments. Hydrol Earth Syst Sci Discuss 10:14987–15032. doi:10.5194/hessd-10-14987-2013

    Google Scholar 

  • Pfister S, Bayer P, Koehler A, Hellweg S (2011a) Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ Sci Technol 45:5761–5768. doi:10.1021/es1041755

    Google Scholar 

  • Pfister S, Bayer P, Koehler A, Hellweg S (2011b) Projected water consumption in future global agriculture: scenarios and related impacts. Sci Total Environ 409:4206–4216. doi:10.1016/j.scitotenv.2011.07.019

    Google Scholar 

  • Pokhrel Y, Hanasaki N, Koirala S, Cho J, Yeh PJ-F, Kim H, Kanae S, Oki T (2012a) Incorporating anthropogenic water regulation modules into a land surface model. J Hydrometeorol 13:255–269. doi:10.1175/JHM-D-11-013.1

    Google Scholar 

  • Pokhrel YN, Hanasaki N, Yeh PJ-F, Yamada T, Kanae S, Oki T (2012b) Model estimates of sea level change due to anthropogenic impacts on terrestrial water storage. Nat Geosci 5:389–392. doi:10.1038/ngeo1476

    Google Scholar 

  • Pokhrel YN, Fan Y, Miguez-Macho G, Yeh PJ-F, Han S-C (2013) The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE. J Geophys Res Atmos 118:3233–3244. doi:10.1002/jgrd.50335

    Google Scholar 

  • Pokhrel YN, Koirala S, Yeh PJ-F, Hanasaki N, Longuevergne L, Kanae S, Oki T (2015) Incorporation of groundwater pumping in a global land surface model with the representation of human impacts. Water Resour Res 51:78–96. doi:10.1002/2014WR015602

    Google Scholar 

  • Portmann FT, Döll P, Eisner S, Flörke M (2013) Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ Res Lett 8:024023. doi:10.1088/1748-9326/8/2/024023

    Google Scholar 

  • Postel SL (1999) Pillar of sand: can the irrigation miracle last? W.W. Norton, New York

    Google Scholar 

  • Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable fresh water. Science 271:785–788. doi:10.1126/science.271.5250.785

    Google Scholar 

  • Prudhomme C, Giuntoli I, Robinson EL, Clark DB, Arnell NW, Dankers R, Fekete B, Franssen W, Gerten D, Gosling SN, Hagemann S, Hannah DM, Kim H, Masaki Y, Satoh Y, Stacke T, Wada Y, Wisser D (2014) Drought in the 21st century: a multi-model ensemble experiment to assess global change, quantify uncertainty and identify ‘hotspots’, change. Proc Natl Acad Sci USA 111(9):3262–3267. doi:10.1073/pnas.1222473110

    Google Scholar 

  • Ramankutty N, Foley JA (1998) Characterizing patterns of global land use: an analysis of global croplands data. Global Biogeochem Cycl 12(4):667–685. doi:10.1029/98GB02512

    Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet. Part 1: the geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles 22:GB1003 doi:10. 1029/2007GB002952

    Google Scholar 

  • Reilly TE, Dennehy KF, Alley WM, Cunningham WL (2008) Ground-water availability in the United States, U.S. Geol. Surv. Circ., p. 70. http://pubs.usgs.gov/circ/1323/

  • Richey AS, Thomas BF, Lo M-H, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5238. doi:10. 1002/2015WR017349

    Google Scholar 

  • Rockström J, Falkenmark M, Karlberg L, Hoff H, Rost S, Gerten D (2009) Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour Res 45:W00A12. doi:10.1029/2007WR006767

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi:10.1038/nature08238

    Google Scholar 

  • Rost S, Gerten D, Bondeau A, Luncht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:W09405. doi:10.1029/2007WR006331

  • Sahagian DL, Schwartz FW, Jacobs DK (1994) Direct anthropogenic contributions to sea level rise in the twentieth century. Nature 367:54–57. doi:10.1038/367054a0

    Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39. doi:10.1007/s10040-001-0176-2

    Google Scholar 

  • Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Chang Biol 11:1577–1593. doi:10.1111/j.1365-2486.2005.01026.x

    Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370. doi:10.1002/hyp.6335

    Google Scholar 

  • Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43:W03437. doi:10.1029/2006WR005486

  • Scanlon BR, Reedy RC, Gates JB (2010) Effects of irrigated agroecosystems: 1. Quantity of soil water and groundwater in the southern High Plains, Texas. Water Resour Res 46:W09537. doi:10.1029/2009WR008427

  • Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012a) Groundwater depletion and sustainability of irrigation in the U.S. High Plains and Central Valley. Proc Natl Acad Sci USA 109:9320–9325. doi:10.1073/pnas.1200311109

    Google Scholar 

  • Scanlon BR, Longuevergne L, Long D (2012b) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour Res 48:W04520. doi:10.1029/2011WR011312

  • Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete B, Colón- González FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multi-model assessment of water scarcity under climate change. Proc Natl Acad Sci USA 111(9):3245–3250. doi:10.1073/pnas.1222460110

    Google Scholar 

  • Seager R (2007) The turn of the century North American drought: global context, dynamics, and past analogs. J Clim 20:5527–5552. doi:10.1175/2007JCLI1529.1

    Google Scholar 

  • Shah T (2005) Groundwater and human development: challenges and opportunities in livelihoods and environment. Water Sci Technol 51:27–37

    Google Scholar 

  • Shamsudduha M, Taylor RG, Longuevergne L (2012) Monitoring groundwater storage changes in the highly seasonal humid tropics: validation of GRACE measurements in the Bengal Basin. Water Resour Res 48:W02508. doi:10.1029/2011WR010993

  • Sheffield J, Wood EF (2007) Characteristics of global and regional drought, 1950–2000: analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J Geophys Res 112:D17115. doi:10.1029/2006JD008288

  • Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438. doi:10.1038/nature11575

    Google Scholar 

  • Shiklomanov IA (2000a) World water scenarios analyses, chap. World water resources and water use: present assessment and outlook for 2025, Earthscan, London

    Google Scholar 

  • Shiklomanov IA (2000b) Appraisal and assessment of world water resources. Water Int. 25:11–32. doi:10.1080/02508060008686794

    Google Scholar 

  • Siebert S, Döll P (2010) Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J Hydrol 384:198–217. doi:10.1016/j.jhydrol.2009.07.031

    Google Scholar 

  • Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation—a global inventory. Hydrol Earth Syst Sci 14:1863–1880. doi:10.5194/hess-14-1863-2010

    Google Scholar 

  • Smakhtin VU (2001) Low flow hydrology: a review. J Hydrol 240:147–186. doi:10.1016/S0022-1694(00)00340-1

    Google Scholar 

  • Smakhtin VU, Revenga C, Döll P (2004) A pilot global assessment of environmental water requirements and scarcity. Wat. Int. 29:307–317. doi:10.1080/02508060408691785

    Google Scholar 

  • Solomon S, et al (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Strassberg G, Scanlon BR, Rodell M (2007) Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys Res Lett 34:L14402. doi:10.1029/2007GL030139

  • Sturchio NC et al (2004) One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys Res Lett 31:L05503. doi:10.1029/2003GL019234

    Google Scholar 

  • Tague C, Grant G, Farrell M, Choate J, Jefferson A (2008) Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades. Clim Change 86:189–210. doi:10.1007/s10584-007-9294-8

    Google Scholar 

  • Tallaksen LM, van Lanen HAJ (2004) Hydrological drought. Processes and estimation for streamflow and groundwater, developments in water science, 48. Elsevier, Amsterdam, p 581

    Google Scholar 

  • Tang Q, Lettenmaier DP (2012) 21st century runoff sensitivities of major global river basins. Geophys Res Lett 39:L06403. doi:10.1029/2011GL050834

    Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. doi:10.1126/science.1099192

    Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, van Beek R, Wada Y, Longuevergne L, LeBlanc M, Famiglietti JS, Edmunds M, Konikow L, Green TR, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsudduha M, Hiscock K, Yeh PJ-F, Holman I, Treidel H (2013) Groundwater and climate change. Nat Clim Chang 3:322–329. doi:10.1038/nclimate1744

    Google Scholar 

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi:10.1029/2009GL039401

  • Trenberth KE, Branstator GW, Arkin PA (1988) Origins of the 1988 North American Drought. Science 242:1640–1645. doi:10.1126/science.242.4886.1640

    Google Scholar 

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought, Nature Clim. Change 4:17–22. doi:10.1038/nclimate2067

    Google Scholar 

  • Turral H, Burke J, Faurès J-M (2011) Climate change, water and food security, Water Rep., 36, Food and Agric. Organ. of United Nations (FAO), Rome, Italy, p 200

    Google Scholar 

  • U.S. Geological Survey (USGS) (1999) Ground water (general interest publication), Tech. Rep., Reston, VA. USA. http://capp.water.usgs.gov/GIP/gw_gip/

  • U.S. Geological Survey (USGS) (2000) Ground water resources for the future: land subsidence in the United States, USGS Fact Sheet-165-00, Tech. Rep., Reston, VA. USA. http://water.usgs.gov/ogw/pubs/fs00165/

  • Van Beek LPH, Wada Y, Bierkens MFP (2011) Global monthly water stress: 1. Water balance and water availability. Water Resour Res 47:W07517. doi:10.1029/2010WR009791

  • Van Dijk AIJM, Renzullo LJ, Wada Y, Tregoning P (2014) A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol Earth Syst Sci 18:2955–2973. doi:10.5194/hess-18-2955-2014

    Google Scholar 

  • Van Vuuren D, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt G, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith S, Rose S (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi:10.1007/s10584-011-0148-z

    Google Scholar 

  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288. doi:10.1126/science.289.5477.284

    Google Scholar 

  • Vörösmarty CJ, Leveque C, Revenga C (2005) Millennium ecosystem assessment volume 1: conditions and trends, chap 7: Freshwater ecosystems. Island Press, Washington, pp 165–207

    Google Scholar 

  • Vörösmarty CJ, McIntyre P, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. doi:10.1038/nature09440

    Google Scholar 

  • Voss KA, Famiglietti JS, Lo M, de Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris- Euphrates-Western Iran region. Water Resour Res. doi:10.1002/wrcr.20078

    Google Scholar 

  • Wada Y, Bierkens MFP (2014) Sustainability of global water use: past reconstruction and future projections. Environ Res Lett 9:104003. doi:10.1088/1748-9326/9/10/104003

    Google Scholar 

  • Wada Y, Heinrich L (2013) Assessment of transboundary aquifers of the world—vulnerability arising from human water use. Environ Res Lett 8:024003. doi:10.1088/1748-9326/8/2/024003

    Google Scholar 

  • Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:L20402. doi:10.1029/2010GL044571

    Google Scholar 

  • Wada Y, van Beek LPH, Bierkens MFP (2011a) Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol Earth Syst Sci 15:3785–3808. doi:10.5194/hess-15-3785-2011

    Google Scholar 

  • Wada Y, van Beek LPH, Viviroli D, Dürr HH, Weingartner R, Bierkens MFP (2011b) Global monthly water stress: 2. Water demand and severity of water stress. Water Resour Res 47:W07518. doi:10.1029/2010WR009792

  • Wada Y, van Beek LPH, Bierkens MFP (2012a) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res 48:W00L06. doi:10.1029/2011WR010562. Special Issue: Toward Sustainable Groundwater in Agriculture

  • Wada Y, van Beek LPH, Sperna Weiland FC, Chao BF, Wu Y-H, Bierkens MFP (2012b) Past and future contribution of global groundwater depletion to sea-level rise. Geophys Res Lett 39:L09402. doi:10.1029/2012GL051230

    Google Scholar 

  • Wada Y, van Beek LPH, Wanders N, Bierkens MFP (2013a) Human water consumption intensifies hydrological drought worldwide. Environ Res Lett 8:034036. doi:10.1088/1748-9326/8/3/034036

    Google Scholar 

  • Wada Y, Wisser D, Eisner S, Flörke M, Gerten D, Haddeland I, Hanasaki N, Masaki Y, Portmann FT, Stacke T, Tessler Z, Schewe J (2013b) Multimodel projections and uncertainties of irrigation water demand under climate change. Geophys Res Lett 40:4626–4632. doi:10.1002/grl.50686

    Google Scholar 

  • Wada Y, Wisser D, Bierkens MFP (2014a) Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst Dyn 5:15–40. doi:10.5194/esd-5-15-2014

    Google Scholar 

  • Wada Y, Gleeson T, Esnault L (2014b) Wedge approach to water stress. Nat Geosci 7:615–617. doi:10.1038/ngeo2241

    Google Scholar 

  • Widén-Nilsson E, Halldin S, Xu C-Y (2007) Global water-balance modelling with WASMOD-M: parameter estimation and regionalization. J Hydrol 340:105–118. doi:10.1016/j.jhydrol.2007.04.002

    Google Scholar 

  • Wilhite DA (ed) (2000) Drought: a global assessment. Routledge, London

    Google Scholar 

  • Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH (2010) Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol Earth Syst Sci 14:1–24. doi:10.5194/hess-14-1-2010

    Google Scholar 

  • Wisser D, Frolking S, Hagen S, Bierkens MFP (2013) Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resour Res 49:5732–5739. doi:10.1002/wrcr.20452

    Google Scholar 

  • World Water Assessment Programme (WWAP) (2003) Water for people: Water for life, The United Nations World Water Development Report, United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, France

    Google Scholar 

  • World Water Assessment Programme (WWAP) (2009) Water in a changing world, The United Nations World Water Development Report 3, United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, France

    Google Scholar 

  • Yates DN (1997) Approaches to continental scale runoff for integrated assessment models. J Hydrol 201:289–310. doi:10.1016/S0022-1694(97)00044-9

    Google Scholar 

  • Yoshikawa S, Cho J, Yamada HG, Hanasaki N, Khajuria A, Kanae S (2014) An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960–2000 and 2050). Hydrol Earth Syst Sci 18:4289–4310. doi:10.5194/hess-18-4289-2014

    Google Scholar 

  • Zektser IS, Everett LG (eds) (2004) Groundwater resources of the world and their use, IHP-VI series on groundwater No. 6, United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, France

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihide Wada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wada, Y. (2016). Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects. In: Cazenave, A., Champollion, N., Benveniste, J., Chen, J. (eds) Remote Sensing and Water Resources. Space Sciences Series of ISSI, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-32449-4_10

Download citation

Publish with us

Policies and ethics