Skip to main content

Bilateral Information Sharing and Pricing Incentives in a Retail Channel

  • Chapter
  • First Online:
Handbook of Information Exchange in Supply Chain Management

Part of the book series: Springer Series in Supply Chain Management ((SSSCM,volume 5))

Abstract

This chapter evaluates the impact of sharing information on wholesale and retail pricing incentives as well as on the distribution of economic rents. We consider a model in which the manufacturer distributes its product to one or more retailers. Each firm receives a private signal as an estimate of stochastic consumer demand. We show that, in the absence of information sharing, the retailer is able to use the wholesale price to infer the manufacturer’s private signal. This creates a pricing distortion which benefits the retailer. Downward sharing of the manufacturer’s private signal eliminates this distortion. In contrast, when the retailer shares its private signal upstream, the manufacturer is able to set price closer to retailer’s value, thus capturing downstream consumer surplus. In general, the manufacturer benefits from more information sharing at the loss of downstream retailers and consumers. Hence, information sharing arrangements in equilibrium require side payments and/or sufficient cost savings (e.g., reduced inventory costs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Another related paper is that of Guo and Iyer (2010), who examine sequential consumer preference information acquisition by a manufacturer and the subsequent sharing of this information with the downstream retailer.

  2. 2.

    For convenience, we use the gender pronouns “he” and “she” to refer to the manufacturer and retailer, respectively.

  3. 3.

    Later in Sect. 16.4, we consider the case of two competing retailers.

  4. 4.

    Since the existence of double marginalization is the main reason for providing incentives to share information in our model, we do not consider nonlinear pricing (two part tariffs, for instance), which eliminates double marginalization altogether. Nonlinear pricing may not be feasible when the manufacturer cannot prevent secondary, resale markets for his products or when signing long term contracts between the manufacturer and retailer is not possible.

  5. 5.

    See Gal-Or et al. (2008) for more details.

  6. 6.

    We maintain a common u for simplicity. It is possible, however, to consider retailer-specific stochastic demand terms. To the extent that there is positive correlation across retailers’ terms, we expect the basic quantitative effects to survive.

References

  • Cachon GP, Fisher M (2000) Supply chain inventory management and the value of shared information. Manag Sci 46(7):1032–1048

    Article  Google Scholar 

  • DeGroot M (1970) Optimal statistical decisions. McGraw Hill, New York

    Google Scholar 

  • Dukes A, Gal-Or E, Geylani T (2011) Who benefits from bilateral information exchange in a retail channel. Econ Lett 112(2):210–212

    Article  Google Scholar 

  • Dukes A, Geylani T (2016) Dominant retailers and their impact on marketing channels. In: Emek B (ed) The handbook of economics of retail and distribution. Edward Elgar.

    Google Scholar 

  • Gal-Or E (1985) Information sharing in oligopoly. Econometrica 53(1):329–344

    Article  Google Scholar 

  • Gal-Or E (1987) First mover disadvantages with private information. Rev Econ Stud 54:279–292

    Article  Google Scholar 

  • Gal-Or E, Geylani T, Dukes A (2008) Information sharing in a channel with partially informed retailers. Mark Sci 27(3):642–658

    Article  Google Scholar 

  • Guo L, Iyer G (2010) Information acquisition and sharing in a vertical relationship. Mark Sci 29(2):483–506

    Article  Google Scholar 

  • Ha AY, Tong S (2008) Contracting and information sharing under supply chain competition. Manag Sci 54(3):701–715

    Article  Google Scholar 

  • He C, Marklund J, Vossen T (2006) Vertical information sharing in a volatile market. Mark Sci 27(2):513–530

    Google Scholar 

  • Lee HL, Padmanabhan V, Whang S (1997) Information distortion in a supply chain: the bullwhip effect. Manag Sci 43(3):546–558

    Article  Google Scholar 

  • Lee HL, So KC, Tang CS (2000) The value of information sharing in a two-level supply chain. Manag Sci 46(4):626–643

    Article  Google Scholar 

  • Li L (1985) Cournot oligopoly with information sharing. RAND J Econ 16(3):521–536

    Article  Google Scholar 

  • Li L (2002) Information sharing in a supply chain with horizontal competition. Manag Sci 48(8):1196–1212

    Article  Google Scholar 

  • Milgrom P, Roberts J (1980) Limit pricing and entry under incomplete information: an equilibrium analysis. Econometrica 50(2):443–459

    Article  Google Scholar 

  • Mittendorf B, Shin J, Yoon D-H (2013) Manufacturer marketing initiatives and retailer information sharing. Quant Mark Econ 11(1):263–287

    Article  Google Scholar 

  • Niraj R, Iyer G, Narasimhan C (2007) Inventory and information in distribution channels. Manag Sci 53(9):1551–1561

    Google Scholar 

  • Novshek W, Schonneschein H (1982) Fulfilled expectations Cournot duopoly with information acquisition and release. Bell J Econ 13(1):214–218

    Article  Google Scholar 

  • Raith M (1996) A general model of information sharing in oligopoly. J Econ Theory 71(1): 260–288

    Article  Google Scholar 

  • Rubinstein A (1982) Perfect equilibrium in a bargaining model. Econometrica 50(1):97–110

    Article  Google Scholar 

  • Spence M (1973) Job market signaling. Q J Econ 87(3) 355–374

    Article  Google Scholar 

  • Vives X (1984) Duopoly information equilibrium: Cournot and Bertrand. J Econ Theory 34(1): 71–94

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Dukes .

Editor information

Editors and Affiliations

Appendix

Appendix

This appendix provides the proofs of all propositions and corollaries stated in the main text.

Proof of Proposition 1

A comparison of the expected values of ( 16.11) and ( 16.12) with the expected values of ( 16.16) and ( 16.17) gives the results of part (i). To deduce part (ii), we compute realized profits to each firm in the two regimes.

NS: The realized quantity sold is

$$\displaystyle\begin{array}{rcl} q^{NS}& =& a - br^{NS} + u {}\\ & =& \frac{a} {4} \frac{3\sigma + 2s} {2\sigma + s} - \frac{\sigma (3\sigma + 2s)} {4(\sigma +s)(2\sigma + s)}x_{M} - \frac{\sigma } {2(2\sigma + s)}x_{R} + u. {}\\ \end{array}$$

Computing profits at the retailer

$$\displaystyle\begin{array}{rcl} \varPi _{R}^{NS}& =& (r^{NS} - w^{NS})q^{NS} {}\\ & =& \frac{\varDelta } {2b}{\biggl [a\frac{3\sigma + s} {2\sigma } + \frac{\sigma +2s} {2(\sigma +s)}x_{M} + x_{R}\biggr ]} \times q^{NS}, {}\\ \end{array}$$

and at the manufacturer

$$\displaystyle\begin{array}{rcl} \varPi _{M}^{NS}& =& w^{NS}q^{NS} {}\\ & =& \frac{\varDelta } {2b}{\biggl [a \frac{\sigma } {2\sigma + s} + \frac{\sigma ^{2}} {(2\sigma + s)(\sigma +s)}x_{M}\biggr ]} \times q^{NS}, {}\\ \end{array}$$

where \(\varDelta \equiv \sigma /(2\sigma + s)\). Taking expectations over (u, x M , x R ) gives

$$\displaystyle{ E(\varPi _{R}^{NS}) = \frac{\varDelta ^{2}} {16b}{\biggl [a^{2}{\biggl (\frac{3\sigma + 2s} {\sigma } \biggr )}^{\!\!\!2} + \frac{9\sigma ^{2} + 20\sigma s + 8s^{2}} {\sigma +s} \biggr ]} }$$
(16.28)

and

$$\displaystyle{ E(\varPi _{M}^{NS}) = \frac{\varDelta ^{2}} {8b}{\biggl [a^{2}\frac{3\sigma + 2s} {\sigma } + \frac{\sigma (3\sigma + 2s)} {\sigma +s} \biggr ]}, }$$
(16.29)

which makes use the following facts:

$$\displaystyle{ \begin{array}{rll} E(x_{M}x_{R})& = E(u^{2} +\varepsilon _{M}u +\varepsilon _{R}u +\varepsilon _{M}\varepsilon _{R}) =\sigma \\ E(x_{i})^{2} & = E(u^{2} + 2\varepsilon _{i}u +\varepsilon _{i}) =\sigma +s, \\ E(x_{i}u)& = E(u^{2} + u\varepsilon _{i}) =\sigma, \end{array} }$$
(16.30)

for i = M, R.

DS: The realized quantity sold is

$$\displaystyle\begin{array}{rcl} q^{DS}& =& a - br^{DS} + u {}\\ & =& \frac{a} {4} - \frac{\varDelta } {2}x_{R} -\frac{\varDelta (4\sigma + 3s)} {4(\sigma +s)} x_{R} + u. {}\\ \end{array}$$

Computing profits at the retailer

$$\displaystyle\begin{array}{rcl} \varPi _{R}^{DS}& =& (r^{DS} - w^{DS})q^{DS} {}\\ & =& \frac{1} {4b}{\biggl [a + \frac{\varDelta s} {\sigma +s}x_{M} + 2\varDelta x_{R}\biggr ]} \times q^{DS}, {}\\ \end{array}$$

and at the manufacturer

$$\displaystyle\begin{array}{rcl} \varPi _{M}^{DS}& =& w^{DS}q^{DS} ={\biggl [ \frac{a} {2b} + \frac{\sigma } {2b(\sigma +s)}x_{M}\biggr ]} \times q^{DS}. {}\\ \end{array}$$

Taking expectations over (u, x M , x R ) gives

$$\displaystyle{ E(\varPi _{R}^{DS}) = \frac{1} {16b}{\biggl [a^{2} + \frac{\sigma \varDelta (2\sigma + 5s)} {\sigma +s} \biggr ]} }$$
(16.31)

and

$$\displaystyle{ E(\varPi _{M}^{DS}) = \frac{1} {8b}{\biggl [a^{2} + \frac{\sigma ^{2}} {\sigma +s}\biggr ]}. }$$
(16.32)

Using ( 16.28) and ( 16.31), the difference E(Π R DSΠ R NS) is given by the expression in ( 16.18). For the manufacturer, use ( 16.29) and ( 16.32) to compute

$$E(\Pi _M^{NS} - \Pi _M^{DS}) = \frac{1}{{8b}}[{a^2}\underbrace {\left( {1 - \frac{{\sigma (3\sigma + 2s)}}{{{{(2\sigma + s)}^2}}}} \right)}_ - + \underbrace {\left( {\frac{{{\sigma ^2}}}{{\sigma + s}} - \frac{{{\sigma ^3}(3\sigma + 2s)}}{{{{(2\sigma + s)}^2}(\sigma + s)}}} \right)}_ - ] < 0.$$

Q.E.D.

Proof of Corollary 1

The change in expected consumer surplus can be computed using ( 16.19) for k = NS, DS. This leads to

$$\displaystyle\begin{array}{rcl} E(CS^{NS} - CS^{DS})& =& \frac{b} {2}[E(r^{NS})^{2} - E(r^{DS})^{2}] - a[E(r^{NS}) - E(r^{DS})] {}\\ & & -[E(ur^{NS})^{2} - E(ur^{DS})^{2}] {}\\ & =& \frac{1} {32b(2\sigma + s)^{2}} {}\\ & & \times {\biggl [a^{2}(5\sigma + 3s)(\sigma +s) + (7\sigma ^{2} + 8\sigma s + 3s^{2}) \frac{\sigma ^{2}} {\sigma +s}\biggr ]}, {}\\ \end{array}$$

which makes use of the facts in ( 16.30) to compute the expectations in the brackets above and some amount of algebra. The expression above is obviously positive. Q.E.D.

Proof of Proposition 2

The DS case is analyzed in the proof of Proposition 1. We derive here the results for FS. Note that part (i) of the proposition follows from the expressions ( 16.25) and ( 16.26). Part (ii) requires the computation of profits in FS regime.

FS: The realized quantity sold is

$$\displaystyle{ q^{FS} = a - br^{FS} + u = \frac{a} {4} -\frac{3\varDelta } {4}(x_{R} + x_{R}) + u. }$$

Computing profits at the retailer

$$\displaystyle{ \varPi _{R}^{FS} = (r^{FS} - w^{FS})q^{FS} = \frac{1} {4b}\left [a +\varDelta (x_{M} + x_{R})\right ] \times q^{FS}, }$$

and at the manufacturer

$$\displaystyle{ \varPi _{M}^{FS} = w^{FS}q^{FS} = \frac{1} {2b}\left [a +\varDelta (x_{M} + x_{R})\right ] \times q^{DS}. }$$

Taking expectations over (u, x M , x R ) gives

$$\displaystyle{ E(\varPi _{R}^{FS}) = \frac{1} {16b}[a^{2} +\varDelta ^{2}(4\sigma + 2s)] }$$
(16.33)

and

$$\displaystyle{ E(\varPi _{M}^{FS}) = \frac{1} {8b}[a^{2} +\varDelta ^{2}(7\sigma + 2s)]. }$$
(16.34)

Using ( 16.33) and ( 16.34), the difference E(Π R FSΠ R DS) is given by the expression in ( 16.24). For the manufacturer, use ( 16.33) and ( 16.34) to compute

$$\displaystyle{ E(\varPi _{M}^{FS} -\varPi _{ M}^{DS}) = \frac{\varDelta ^{2}} {8b}{\biggl [\frac{3\sigma ^{2} + 5\sigma s + s^{2}} {\sigma +s} \biggr ]} > 0.\quad \text{Q.E.D.} }$$

Proof of Corollary 2

Following the computation in Corollary 1 and using the corresponding derivations for the FS regime we have

$$\displaystyle{ E(CS^{DS} - CS^{FS}) = \frac{3s\sigma ^{2}} {32b(\sigma +s)(2\sigma + s)} > 0, }$$

which makes use of the fact that E(r FS) = E(r DS). Q.E.D.

Proof of Proposition 3

NS: We start with the no sharing NS regime and specify decision rules for the three firms as follows

$$\displaystyle{ w = f_{M}^{NS}(x_{ M}) =\mu _{0} +\mu _{1}x_{M} }$$
(16.35)
$$\displaystyle{ r_{i} = f_{i}^{NS}(w,x_{ i}) =\rho _{0i} +\rho _{1i}w +\rho _{2i}x_{i},\quad i = 1,2. }$$
(16.36)

M sets a price w according to f M NS and retailers respond by simultaneously maximizing

$$\displaystyle\begin{array}{rcl} E(\varPi _{i}\vert w,x_{i})& =& (r_{i} - w)E(q_{i}\vert w,x_{i}) \\ & =& (r_{i} - w){\biggl [ \frac{a} {b + d} - \frac{br_{i}} {b^{2} - d^{2}} + \frac{dE(r_{j}\vert w,x_{i})} {b^{2} - d^{2}} + E(u\vert w,x_{i})\biggr ]}.{}\end{array}$$
(16.37)

for i = 1, 2 and ji. Retailer i’s conditional expectations of its rivals’ price is facilitated by ( 16.36):

$$\displaystyle{ E(r_{j}\vert w,x_{i}) =\rho _{0j} +\rho _{1j}w +\rho _{2j}E(x_{j}\vert w,x_{i}),\quad i = 1,2\text{ and }j\neq i. }$$

Again, perfect inference of x M is possible from observing wholesale price w and inverting ( 16.35). Specifically, retailer i’s conditional expectations in ( 16.37) are

$$\displaystyle\begin{array}{rcl} & & E(x_{j}\vert w,x_{i}) = E(u\vert w,x_{i}) = \frac{\sigma (x_{i} + x_{M})} {2\sigma + s} = \frac{\sigma (x_{i} + (w -\mu _{0})/\mu _{1})} {2\sigma + s}, {}\\ \end{array}$$

which were similarly derived in Sect. 16.2.

The manufacturer sets wholesale price w to maximize expected profits:

$$\displaystyle\begin{array}{rcl} E(\varPi _{M}\vert x_{M})& =& wE(q_{1} + q_{2}\vert x_{M}) \\ & =& w{\biggl \{ \frac{2a} {b + d} - \frac{(b - d)} {b^{2} - d^{2}}[E(r_{1}\vert x_{M}) + E(r_{2}\vert x_{M})] + 2E(u\vert x_{M})\biggr \}},{}\end{array}$$
(16.38)

where M’s conditional expectations are computed using ( 16.36) and ( 16.8) so that

$$\displaystyle{E(x_{i}\vert x_{M}) = E(u\vert x_{M}) = \frac{\sigma } {\sigma +s}x_{M}.}$$

As before, maximizations of ( 16.37) for each i = 1, 2 and ( 16.38) yields three first order conditions which may be used to match coefficients with ( 16.35) and ( 16.36), respectively. This leads to a linear system of eight equations and eight unknown characterizing the equilibrium decision rules. However, symmetry across retailers reduces the solution by three variables leading to the following solution:

$$\displaystyle\begin{array}{rcl} w^{NS}& =& \varGamma {\biggl [a + (b + d) \frac{\sigma } {\sigma +s}x_{M}\biggr ]} {}\\ r_{i}^{NS}& =& \mu _{ 0}^{NS} +\mu _{ 1}^{NS}w +\mu _{ 2}^{NS}x_{ i}, {}\\ \end{array}$$

where

$$\displaystyle\begin{array}{rcl} \varGamma & =& \frac{4bd(\sigma +s)^{2} + 2\sigma (\sigma +s)(2b^{2} + bd + d^{2}) +\sigma ^{2}(4b^{2} - d^{2})} {2[4b^{2}(2\sigma + s) - d^{2}\sigma ^{2}]}; {}\\ \mu _{0}^{NS}& =& \frac{b - d} {2b - d}{\biggl [a - \frac{2ab(\sigma +s)} {2b(2\sigma + s) - d\sigma }\biggr ]}; {}\\ \mu _{1}^{NS}& =& \frac{\sigma (b^{2} - d^{2})} {2b(2\sigma + s) - d\sigma };\quad \text{and} {}\\ \mu _{2}^{NS}& =& \frac{b} {2b - d}{\biggl [1 - \frac{2(b - d)(\sigma +s)} {\varGamma 2b(2\sigma + s) - d\sigma }\biggr ]}. {}\\ \end{array}$$

Note that Γ has the following properties:

$$\displaystyle{ \varGamma < \frac{1} {2}\quad \text{for all }d < b\quad \text{and}\quad \lim _{b\downarrow d}\varGamma = \frac{1} {2}. }$$
(16.39)

DS: In this regime both retailers have knowledge of the manufacturer’s realized signal x M , but the manufacturer has no additional information relative to NS. This information structure implies the following linear forms of decision rules:

$$\displaystyle\begin{array}{rcl} w& =& f_{M}^{DS}(x_{ M}) =\mu _{0} +\mu _{1}x_{M} {}\\ r_{i}& =& f_{i}^{DS}(w,x_{ i},x_{M}) =\rho _{0i} +\rho _{1i}w +\rho _{2i}x_{i} +\rho _{3i}x_{M};\quad i = 1,2. {}\\ \end{array}$$

Following the same process as in the NS regime without the inference of x M leads to the following equilibrium decision rules:

$$\displaystyle\begin{array}{rcl} w^{DS}& =& \frac{1} {2}{\biggl [a + (b + d) \frac{\sigma } {\sigma +s}x_{M}\biggr ]}{}\end{array}$$
(16.40)
$$\displaystyle\begin{array}{rcl} r_{i}^{DS}& =& \mu _{ 0}^{DS} +\mu _{ 1}^{DS}w +\mu _{ 2}^{DS}x_{ i} +\mu _{ 3}^{DS}x_{ M},{}\end{array}$$
(16.41)

where

$$\displaystyle\begin{array}{rcl} & \mu _{0}^{DS} = \frac{a(b-d)} {2b-d};\quad \mu _{1}^{DS} = \frac{\sigma (b^{2}-d^{2})} {2b(2\sigma +s)-d\sigma };\quad \mu _{2}^{DS} = \frac{b} {2b-d};& {}\\ & \text{and}\quad \mu _{3}^{DS} = \frac{2b\sigma (b^{2}-d^{2})} {(2b-d)[2b(2\sigma +s)+d\sigma ]}. & {}\\ \end{array}$$

The difference in expected wholesale prices: \(E(w^{NS} - w^{DS}) = (\varGamma -\tfrac{1} {2})a\), which from (39) is shown negative for d < b and equal zero in the limit d ↑ b.

Finally, the difference in retail prices

$$\displaystyle{E(r^{NS} - r^{DS}) = (\rho _{ 0}^{NS} -\rho _{ 0}^{DS}) + a(\varGamma \rho _{ 2}^{NS} -\tfrac{1} {2}\rho _{2}^{DS})}$$

is seen negative for d < b by noting that ρ 0 NS < ρ 0 DS for d < b, ρ 2 NS = ρ 2 DS for d ≤ b and reusing ( 16.39). Again, ( 16.39) implies this difference is zero in the limit d ↑ b. Q.E.D.

Proof of Proposition 4

To prove this we derive the equilibrium outcome in the FS regime and compare it to the outcome in the DS regime derived in the proof of Proposition 3. In the FS case, we assume all signals x 1, x 2, x M are known by all firms. Hence, the assumed linear form for the decision rules imply

$$\displaystyle\begin{array}{rcl} w& = & f_{M}^{FS}(x_{ 1},x_{2},x_{M}) =\mu _{0} +\mu _{1}x_{1} +\mu _{2}x_{2} +\mu _{3}x_{M} \\ r_{i}& = f_{i}^{FS}(w,x_{i},x_{j},x_{M})& \\ & = & \rho _{0i} +\rho _{1i}x_{i} +\rho _{2i}x_{j} +\rho _{3i}w +\rho _{4i}x_{M};\quad i = 1,2;\ j\neq i.{}\end{array}$$
(16.42)

Expected profit to retailer R i given x 1, x 2, x M and w is

$$\displaystyle\begin{array}{rcl} & & E(\varPi _{i}\vert w,x_{1},x_{2},x_{M}) \\ & & \qquad = E\biggl \{(r_{i} - w)\biggl [ \frac{a} {b + d} - \frac{br_{i}} {b^{2} - d^{2}} \\ & & \qquad \qquad \ \ + \frac{d} {b^{2} - d^{2}}E(r_{j}\vert w,x_{1},x_{2},x_{M}) + E(u\vert w,x_{1},x_{2},x_{M})\biggr ]\biggr \}{}\end{array}$$
(16.43)

and to the manufacturer

$$\displaystyle\begin{array}{rcl} & & E(\left.\varPi _{M}\right \vert x_{1},x_{2},x_{M}) \\ & & \qquad = E{\biggl \{w{\biggl [ \frac{a} {b + d} - \frac{br_{i}} {b^{2} - d^{2}} + \frac{dr_{j}} {b^{2} - d^{2}} + E(u\vert w,x_{1},x_{2},x_{M})\biggr ]}\biggr \}}.{}\end{array}$$
(16.44)

Following DeGroot (1970) we have that

$$\displaystyle{E(u\vert x_{1},x_{2},x_{M}) = \frac{\sigma } {3\sigma + s}(x_{1} + x_{2} + x_{M}).}$$

Furthermore, because retailers i = 1, 2 in the FS regime are in all aspects symmetric, we can exploit the fact that their decision rules will be identical in a symmetric equilibrium. Using these facts and the first order condition for maximizing R i ’s expected profit ( 16.43), we can solve for the equilibrium coefficients of ( 16.42):

$$\displaystyle{ r^{FS} ={\biggl [ \frac{a} {2} + \frac{b + d} {2} \frac{\sigma } {3\sigma + s}(x_{1} + x_{2} + x_{M})\biggr ]}\frac{3b - 2d} {2b - d}, }$$
(16.45)

which has the expectation: \(E(r^{FS}) = (a/2)[(3b - 2d)/(2b - d)]\). Using the retailers’ reaction, ( 16.42), the first order condition from the maximization of ( 16.44) permits the solution

$$\displaystyle{ w^{FS} = \frac{a} {2} + \frac{b + d} {2} \frac{\sigma } {3\sigma + s}(x_{1} + x_{2} + x_{M}), }$$
(16.46)

which has the expectation \(E(w^{FS}) = a/2\). Part (i) of the proposition follows from taking expectations of w DS and r DS, given in Eqs. ( 16.40) and ( 16.41) derived in the proof of Proposition 3.

To establish part (ii) of the proposition, note that the covariances can be computed directly using ( 16.40), ( 16.41), ( 16.45), and ( 16.46) and making use of the facts in ( 16.30):

$$\displaystyle\begin{array}{rcl} \mathop{\mathrm{cov}}(w^{DS},r^{DS})& =& \frac{b + d} {2} \frac{\sigma ^{2}} {\sigma +s}{\biggl \{\!\! \frac{b^{2} - d^{2}} {2b(2\sigma + s) - d\sigma }\!{\biggl [\sigma + \frac{2b} {2b - d}(\sigma +s)\biggr ]}\! + \frac{b(b + d)} {2(2b - d)}\!\biggr \}} {}\\ \mathop{\mathrm{cov}}(r^{DS},u)& =& \frac{\sigma ^{2}} {2b - d}{\biggl \{\frac{(b^{2} - d^{2})(4b - d)} {2b(2\sigma + s) - d\sigma } + \frac{b(b + d)} {2(\sigma +s)} \biggr \}} {}\\ \mathop{\mathrm{cov}}(w^{FS},r^{FS})& =& \frac{3\sigma (b + d)^{2}} {4} \frac{3b - 2d} {2d - d} {}\\ \mathop{\mathrm{cov}}(r^{FS},u)& =& \frac{3\sigma ^{2}(b + d)} {2(3\sigma + s)} \frac{3b - 2d} {2d - d}. {}\\ \end{array}$$

Evaluating the limits of these expressions for d ↑ b implies the orderings stated in the proposition. This guarantees a d < b such that the ordering holds in the left neighborhood of b. Q.E.D.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dukes, A., Gal-Or, E., Geylani, T. (2017). Bilateral Information Sharing and Pricing Incentives in a Retail Channel. In: Ha, A., Tang, C. (eds) Handbook of Information Exchange in Supply Chain Management. Springer Series in Supply Chain Management, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-32441-8_16

Download citation

Publish with us

Policies and ethics