Skip to main content

Buying from the Babbling Retailer? The Impact of Availability Information on Customer Behavior

  • Chapter
  • First Online:
Handbook of Information Exchange in Supply Chain Management

Part of the book series: Springer Series in Supply Chain Management ((SSSCM,volume 5))

  • 2846 Accesses

Abstract

Provision of real-time information by a firm to its customers has become prevalent in recent years in both the service and retail sectors. In this chapter, we study a retail operations model where customers are strategic in both their actions and in the way they interpret information, while the retailer is strategic in the way it provides information. This chapter focuses on the ability (or the lack thereof) to communicate unverifiable information and influence customers’ actions. We develop a game-theoretic framework to study this type of communication and discuss the equilibrium language emerging between the retailer and its customers. We show that for a single-retailer and homogeneous customer population setting, the equilibrium language that emerges carries no information. In this sense, a single-retailer providing information on its own cannot create any credibility with the customers. We study how the results are impacted due to the heterogeneity of the customers. We provide conditions under which the firm may be able to influence the customer behavior. In particular, we show that the customers’ willingness-to-pay and willingness-to-wait cannot be ranked in an opposite manner. However, even when the firm can influence each customer class separately, the effective demand is not impacted.

This chapter is based on Allon and Bassamboo (2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors of this chapter refrain from claiming that these announcements are indeed made only when the inventory is low.

  2. 2.

    A variety of chapters study mixed-motive economic interaction involving private information and the impact of cheap talk on the outcomes. Farrell and Gibbons (1989) studies cheap talk in bargaining; in political context cheap talk has been studied in multiple papers including Austen-Smith (1990), and Matthews (1989).

  3. 3.

    One should note that the results in Crawford and Sobel and most of the cheap talk literature are stated, based on the bias between the sender’s and the receiver’s preferred actions, which are exogenously given. In our model, the extent of the misalignment depends endogenously on the preferred action of the customers as it arises in equilibrium in the game they play. Thus, even the most basic results cannot be directly borrowed from this literature.

  4. 4.

    We also provide a discussion of the setting where the pricing is a decision of the firm and contingent on the initial inventory in Sect. 12.7.

  5. 5.

    Note that when we say that a customer decides to buy, we merely mean that the customer attempts to buy, but they might not be able to purchase due to limited availability.

  6. 6.

    One can view a more detailed description of the bargain hunter. For instance, D 2 can emerge as an aggregate number of arrivals during the regular season of customers whose valuation is below the regular price p.

  7. 7.

    It is worth noting that the equilibrium may not be unique.

  8. 8.

    We assume that, off the-equilibrium-path, a message that was not supposed to be used will result in a “wait” decision by the customer.

  9. 9.

    if the demand and the quantity do not grow proportionally, it is easy to see that the results are quite trivial. For example, assume that p − s > c. If Q grows faster than the demand, then everybody waits. If the demand grows faster, everybody purchases immediately. In both cases the messages play no role

References

  • Allon G, Bassamboo A (2011) Buying from the babbling retailer? The impact of availability information on customer behavior. Manag Sci 57(4):713–726

    Article  Google Scholar 

  • Allon G, Bassamboo A, Gurvich I (2007) “We will be right with you”: managing customers with vague promises and cheap talk. Oper Res 59(6):1382–1394

    Article  Google Scholar 

  • Austen-Smith D (1990) Information transmission in debate. Am J Polit Sci 34(1):124–152

    Article  Google Scholar 

  • Aviv Y, Pazgal A (2008) Optimal pricing of seasonal products in the presence of forward-looking consumers. Manuf Serv Oper Manag 10:339–359

    Google Scholar 

  • Cachon G, Swinney R (2009) Purchasing, pricing and quick response in the presence of strategic consumers. Manag Sci 55:497–511

    Article  Google Scholar 

  • Crawford VP, Sobel J (1982) Strategic information transmission. Econometrica 50:1431–1451

    Article  Google Scholar 

  • Dana JD Jr (2001) Competition in price and availability when availability is unobservable. RAND J Econ 32(3):497–513

    Article  Google Scholar 

  • Debo L, van Ryzin G (2009) Creating sales with stock-outs. Available at SSRN 1923706 (2009)

    Google Scholar 

  • Demery P (2004) The cross-channel ideal. Available at https://www.internetretailer.com/2004/04/02/the-cross-channel-ideal

  • Farrell J, Gibbons R (1989) Cheap talk can matter in bargaining. J Econ Theory 48(1):221–237

    Article  Google Scholar 

  • Fudenberg D, Tirole J (1991) Game theory. MIT Press, Cambridge

    Google Scholar 

  • Liu Q, van Ryzin G (2008) Strategic capacity rationing to induce early purchases. Manag Sci 54:1115–1131

    Article  Google Scholar 

  • Matthews S (1989) Veto threats: rhetoric in a bargaining game. Q J Econ 104(2):347–370

    Article  Google Scholar 

  • Su X, Zhang F (2008) Strategic customer behavior, commitment, and supply chain performance. Manag Sci 55(10):1759–1773

    Article  Google Scholar 

  • Su X, Zhang F (2009) On the value of commitment and availability guarantees when selling to strategic consumers. Manag Sci 55(5):713–726

    Article  Google Scholar 

  • Veeraraghavan S, Debo L (2009) Joining longer queues: information externalities in queue choice. Manuf Serv Oper Manag 11(4):543–562

    Google Scholar 

  • Yin R, Aviv Y, Pazgal A, Tang CS (2009) Optimal markdown pricing: Implications of inventory display formats in the presence of strategic customers. Manag Sci 55(8):1391–1408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gad Allon .

Editor information

Editors and Affiliations

Appendix: Proofs

Appendix: Proofs

Proof of Proposition 3. The proof follows along the same line as the proof of Proposition 2. As before the firm’s incentive compatibility condition requires that the firm signals from the set of messages that maximizes

$$\displaystyle{\lambda _{L}y_{L}(m) +\lambda _{H}y_{H}(m).}$$

Thus, given the equilibrium (ν, y L , y H ), we have that there exist a constant \(\theta\) for all realization of quantity on hand that satisfies the definition of AGNI. This completes the proof.

Proof of Proposition 4. Let \(A_{R,i}^{m_{1}}\) be the implied availability in equilibrium for class i customer during the regular season when the firm signals m 1. Let \(A_{S,i}^{m_{1}}\) be the implied availability in equilibrium for class i customer during the sales season when the firm signals m 1. We know from Lemma 1 that

$$\displaystyle\begin{array}{rcl} \vert A_{R,1}^{m_{1} } - A_{R,2}^{m_{1} }\vert \leq \varDelta ^{R},\quad \vert A_{ S,1}^{m_{1} } - A_{S,2}^{m_{1} }\vert \leq \varDelta ^{S}.& &{}\end{array}$$
(12.16)

For the equilibrium to be CWI, there must be a message such that

$$\displaystyle\begin{array}{rcl} \ \ (A_{R,L}^{m_{1} } - A_{S,L}^{m_{1} })v_{L} + c_{L}& \geq & pA_{R,L}^{m_{1} } - sA_{S,L}^{m_{1} }, \\ (A_{R,H}^{m_{1} } - A_{S,H}^{m_{1} })v_{H} + c_{H}& \leq & pA_{R,H}^{m_{1} } - sA_{S,H}^{m_{1} }.{}\end{array}$$
(12.17)

Using (12.16), we have that

$$\displaystyle{ \vert pA_{R,L}^{m_{1} } - sA_{S,L}^{m_{1} } - (pA_{R,H}^{m_{1} } - sA_{S,H}^{m_{1} })\vert \leq p\varDelta ^{R} + s\varDelta ^{S} \leq v_{ L}(\varDelta ^{R} +\varDelta ^{S}). }$$
(12.18)

Thus, (12.17) implies that

$$\displaystyle\begin{array}{rcl} (A_{R,L}^{m_{1} } - A_{S,L}^{m_{1} })v_{L} + c_{L} \geq (A_{R,H}^{m_{1} } - A_{S,H}^{m_{1} })v_{H} + c_{H} - v_{L}(\varDelta ^{R} +\varDelta ^{S}).& &{}\end{array}$$
(12.19)

Rearranging we obtain

$$\displaystyle\begin{array}{rcl} c_{H} - c_{L}& \leq & (A_{R,L}^{m_{1} } - A_{S,L}^{m_{1} })v_{L} - (A_{R,H}^{m_{1} } - A_{S,H}^{m_{1} })v_{H} + v_{L}(\varDelta ^{R} +\varDelta ^{S}) {}\\ & \leq & (A_{R,L}^{m_{1} } - A_{S,L}^{m_{1} })v_{L} - (A_{R,H}^{m_{1} } - A_{S,H}^{m_{1} })v_{L} + (A_{R,H}^{m_{1} } - A_{S,H}^{m_{1} })(v_{L} - v_{H}) {}\\ & & + v_{L}(\varDelta ^{R} +\varDelta ^{S}) {}\\ & \stackrel{\text{(a)}}{\leq }& (A_{R,L}^{m_{1} } - A_{S,L}^{m_{1} })v_{L} - (A_{R,H}^{m_{1} } - A_{S,H}^{m_{1} })v_{L} + v_{L}(\varDelta ^{R} +\varDelta ^{S}) {}\\ & \stackrel{\text{(b)}}{\leq }& 2v_{L}(\varDelta ^{R} +\varDelta ^{S}), {}\\ \end{array}$$

where (a) follows by noting that v H  > v L and \(A_{R,H}^{m_{1}} \geq A_{S,H}^{m_{1}}\), and (b) follows from (12.16). This completes the proof.

Lemma 1.

 For any equilibrium, we have that for any message m

$$\displaystyle\begin{array}{rcl} \vert A_{R,L}^{m_{1} } - A_{R,H}^{m_{1} }\vert \leq \varDelta ^{R}&:=& 2e^{-\lambda _{L} } + 2e^{-\lambda _{H} } + \mathbb{E}\left [ \frac{1} {Q_{0}}\right ],{}\end{array}$$
(12.20)
$$\displaystyle\begin{array}{rcl} \vert A_{S,L}^{m_{1} } - A_{S,H}^{m_{1} }\vert \leq \varDelta ^{S}&:=& 2e^{-\lambda _{L} } + 2e^{-\lambda _{H} } + \mathbb{E}\left [ \frac{1} {D_{2}}\right ].{}\end{array}$$
(12.21)

Proof of Lemma 1. Let y be the equilibrium behavior for the customers. Thus, for the message m 1 customer of class-L and class-H purchase during the regular season with probability y L (m 1) and y H (m 1). Thus, we can represent the

$$\displaystyle\begin{array}{rcl} A_{R,L}^{m_{1} }& =& \mathbb{E}{\Biggl [ \frac{Q_{0}} {\sum _{i=2}^{N_{L}}\mathbb{I}_{\{\omega _{ i}^{L}\leq y_{L}\}} + 1 +\sum _{ j=1}^{N_{H}}\mathbb{I}_{\{\omega _{ j}^{H}\leq y_{H}\}}} \wedge 1\Biggm |N_{L} \geq 1\Biggr ]},{}\end{array}$$
(12.22)
$$\displaystyle\begin{array}{rcl} A_{R,H}^{m_{1} }& =& \mathbb{E}{\Biggl [ \frac{Q_{0}} {\sum _{i=1}^{N_{L}}\mathbb{I}_{\{\omega _{ i}^{L}\leq y_{L}\}} + 1 +\sum _{ j=2}^{N_{H}}\mathbb{I}_{\{\omega _{ j}^{H}\leq y_{H}\}}} \wedge 1\Biggm |N_{H} \geq 1\Biggr ]},{}\end{array}$$
(12.23)

where ω j H and ω j L are iid sequences of uniform random variables on [0, 1]. Let us define

$$\displaystyle\begin{array}{rcl} X_{L} ={\Biggl [ \frac{Q_{0}} {\sum _{i=2}^{N_{L}}\mathbb{I}_{\{\omega _{ i}^{L}\leq y_{L}\}} + 1 +\sum _{ j=1}^{N_{H}}\mathbb{I}_{\{\omega _{ j}^{H}\leq y_{H}\}}} \wedge 1\Biggr ]},& & {}\\ X_{H} ={\Biggl [ \frac{Q_{0}} {\sum _{i=1}^{N_{L}}\mathbb{I}_{\{\omega _{ i}^{L}\leq y_{L}\}} + 1 +\sum _{ j=2}^{N_{H}}\mathbb{I}_{\{\omega _{ j}^{H}\leq y_{H}\}}} \wedge 1\Biggr ]}.& & {}\\ \end{array}$$

Since,

$$\displaystyle\begin{array}{rcl} & & {\biggl |{\biggl [\sum _{i=2}^{N_{L} }\mathbb{I}_{\{\omega _{i}^{L}\leq y_{L}\}} + 1 +\sum _{ j=1}^{N_{H} }\mathbb{I}_{\{\omega _{j}^{H}\leq y_{H}\}}\biggr ]} -{\biggl [\sum _{i=1}^{N_{L} }\mathbb{I}_{\{\omega _{i}^{L}\leq y_{L}\}} + 1 +\sum _{ j=2}^{N_{H} }\mathbb{I}_{\{\omega _{j}^{H}\leq y_{H}\}}\biggr ]}\biggr |} {}\\ & & \qquad ={\bigl | \mathbb{I}_{\{\omega _{1}^{H}\leq y_{H}\}} - \mathbb{I}_{\{\omega _{1}^{L}\leq y_{L}\}}\bigr |} \leq 1, {}\\ \end{array}$$

we obtain that

$$\displaystyle\begin{array}{rcl} \vert X_{L} - X_{H}\vert \leq \frac{1} {Q_{0}}.& &{}\end{array}$$
(12.24)

Using the definitions of X L and X H , we have

$$\displaystyle\begin{array}{rcl} \vert A_{R,L}^{m_{1} } - A_{R,H}^{m_{1} }\vert & = & \vert \mathbb{E}[X_{L}\vert N_{L} \geq 1] - \mathbb{E}[X_{H}\vert N_{H} \geq 1]\vert {}\\ & = & {\biggl |\frac{\mathbb{E}[X_{L}\mathbb{I}_{\{N_{L}\geq 1\}}]} {\mathbb{P}(N_{L} \geq 1)} -\frac{\mathbb{E}[X_{H}\mathbb{I}_{\{N_{H}\geq 1\}}]} {\mathbb{P}(N_{H} \geq 1)} \biggr |} {}\\ & \leq &{\biggl |\frac{\mathbb{E}[X_{L}\mathbb{I}_{\{N_{L}\geq 1,\ N_{H}\geq 1\}}]} {\mathbb{P}(N_{L} \geq 1)} -\frac{\mathbb{E}[X_{H}\mathbb{I}_{\{N_{H}\geq 1\,N_{L}\geq 1\}}]} {\mathbb{P}(N_{H} \geq 1)} \biggr |} {}\\ & & +{\biggl | \frac{\mathbb{E}[X_{L}\mathbb{I}_{\{N_{L}\geq 1,\ N_{H}=0\}}]} {\mathbb{P}(N_{L} \geq 1)} \biggr |} +{\biggl | \frac{\mathbb{E}[X_{H}\mathbb{I}_{\{N_{H}\geq 1,\ N_{L}=0\}}]} {\mathbb{P}(N_{H} \geq 1)} \biggr |} {}\\ & \stackrel{\text{(a)}}{\leq }& {\biggl |\frac{\mathbb{E}[X_{L}\mathbb{I}_{\{N_{L}\geq 1,\ N_{H}\geq 1\}}]} {\mathbb{P}(N_{L} \geq 1)} -\frac{\mathbb{E}[X_{H}\mathbb{I}_{\{N_{H}\geq 1\,N_{L}\geq 1\}}]} {\mathbb{P}(N_{H} \geq 1)} \biggr |} + e^{-\lambda _{L} } + e^{-\lambda _{H} } {}\\ & = & {\biggl |\frac{\mathbb{E}[X_{L}\mathbb{P}(N_{H} \geq 1)\mathbb{I}_{\{N_{L}\geq 1,\ N_{H}\geq 1\}}] - \mathbb{E}[X_{H}\mathbb{P}(N_{L} \geq 1)\mathbb{I}_{\{N_{H}\geq 1\,N_{L}\geq 1\}}]} {\mathbb{P}(N_{L} \geq 1)\mathbb{P}(N_{H} \geq 1)} \biggr |} {}\\ & & + e^{-\lambda _{L} } + e^{-\lambda _{H} } {}\\ & = & {\biggl |\frac{\mathbb{E}[(X_{L}\mathbb{P}(N_{H} \geq 1) - X_{H}\mathbb{P}(N_{L} \geq 1))\mathbb{I}_{\{N_{L}\geq 1,\ N_{H}\geq 1\}}]} {\mathbb{P}(N_{L} \geq 1)\mathbb{P}(N_{H} \geq 1)} \biggr |} + e^{-\lambda _{L} } + e^{-\lambda _{H} } {}\\ & = & {\bigl |\mathbb{E}[(X_{L}\mathbb{P}(N_{H} \geq 1) - X_{H}\mathbb{P}(N_{L} \geq 1))\vert N_{L} \geq 1,\ N_{H} \geq 1]\bigr |} {}\\ & & + e^{-\lambda _{L} } + e^{-\lambda _{H} } {}\\ & \stackrel{\text{(b)}}{\leq }& {\bigl |\mathbb{E}[(X_{L} - X_{H})\vert N_{L} \geq 1,\ N_{H} \geq 1]\bigr |} + 2(e^{-\lambda _{L} } + e^{-\lambda _{H} }) {}\\ & \stackrel{\text{(c)}}{\leq }& \mathbb{E}\left [ \frac{1} {Q_{0}}\right ] + 2(e^{-\lambda _{L} } + e^{-\lambda _{H} }). {}\\ \end{array}$$

Here (a) and (b) follows by noting that X L and X H are bounded by 1, \(\mathbb{P}(N_{L} = 0) = e^{-\lambda _{L}}\) and \(\mathbb{P}(N_{H} = 0) = e^{-\lambda _{H}}\). The inequality in (c) follows by (12.24) and mutual independence of random variables Q 0, N L and N H . This completes the proof for (12.20). The proof of (12.21) follows along the same line and using the definitions:

$$\displaystyle\begin{array}{rcl} A_{S,L}^{m_{1} }& =& \mathbb{E}{\Biggl [ \frac{Q_{0} -\sum _{i=2}^{N_{L}}\mathbb{I}_{\{\omega _{ i}^{L}\leq y_{L}\}} -\sum _{j=1}^{N_{H}}\mathbb{I}_{\{\omega _{ j}^{H}\leq y_{H}\}}} {N_{B} + 1 +\sum _{ i=2}^{N_{L}}\mathbb{I}_{\{\omega _{ i}^{L}>y_{L}\}} +\sum _{ j=1}^{N_{H}}\mathbb{I}_{\{\omega _{ j}^{H}>y_{H}\}}} \wedge 1\Biggm |N_{L} \geq 1\Biggr ]}{}\end{array}$$
(12.25)
$$\displaystyle\begin{array}{rcl} A_{S,H}^{m_{1} }& =& \mathbb{E}{\Biggl [ \frac{Q_{0} -\sum _{i=1}^{N_{L}}\mathbb{I}_{\{\omega _{ i}^{L}\leq y_{L}\}} -\sum _{j=2}^{N_{H}}\mathbb{I}_{\{\omega _{ j}^{H}\leq y_{H}\}}} {N_{B} + 1 +\sum _{ i=1}^{N_{L}}\mathbb{I}_{\{\omega _{ i}^{L}>y_{L}\}} +\sum _{ j=2}^{N_{H}}\mathbb{I}_{\{\omega _{ j}^{H}>y_{H}\}}} \wedge 1\Biggm |N_{H} \geq 1\Biggr ]}.\qquad {}\end{array}$$
(12.26)

Proof of Theorem 1. As in the proof of Proposition 4, we let \(A_{R,i}^{m_{1}}\) be the implied availability in equilibrium for class i customer during the regular season when the firm signals m 1, and \(A_{S,i}^{m_{1}}\) be the implied availability in equilibrium for class i customer during the regular season when the firm signals m 1. We know from Lemma 1 that

$$\displaystyle\begin{array}{rcl} \vert A_{R,1}^{m_{1} } - A_{R,2}^{m_{1} }\vert \leq \varDelta ^{R},\quad \vert A_{ S,1}^{m_{1} } - A_{S,2}^{m_{1} }\vert \leq \varDelta ^{S}.& &{}\end{array}$$
(12.27)

For the equilibrium to be CWI, there must be a message m 1 and m 2 such that

$$\displaystyle{ \begin{array}{rl} (A_{R,L}^{m_{1}} - A_{S,L}^{m_{1}})v_{L} + c_{L}& \geq pA_{R,L}^{m_{1}} - sA_{S,L}^{m_{1}}, \\ (A_{R,H}^{m_{1}} - A_{S,H}^{m_{1}})v_{H} + c_{H}& \leq pA_{R,H}^{m_{1}} - sA_{S,H}^{m_{1}}; \\ (A_{R,L}^{m_{2}} - A_{S,L}^{m_{2}})v_{L} + c_{L}& \leq pA_{R,L}^{m_{2}} - sA_{S,L}^{m_{2}}, \\ (A_{R,H}^{m_{2}} - A_{S,H}^{m_{2}})v_{H} + c_{H}& \geq pA_{R,H}^{m_{2}} - sA_{S,H}^{m_{2}}. \end{array} }$$
(12.28)

Further, using (12.18), we have

$$\displaystyle\begin{array}{rcl} c_{H} - c_{L}& \leq & (A_{R,L}^{m_{1} } - A_{S,L}^{m_{1} })v_{L} - (A_{R,H}^{m_{1} } - A_{S,H}^{m_{1} })v_{H} + v_{L}(\varDelta ^{R} +\varDelta ^{S}) {}\\ & \leq & (A_{R,L}^{m_{1} } - A_{S,L}^{m_{1} })v_{L} - (A_{R,H}^{m_{1} } - A_{S,H}^{m_{1} })v_{L} + (A_{R,H}^{m_{1} } - A_{S,H}^{m_{1} })(v_{L} - v_{H}) {}\\ & & + v_{L}(\varDelta ^{R} +\varDelta ^{S}) {}\\ & \stackrel{}{\leq }& (A_{R,L}^{m_{1} } - A_{S,L}^{m_{1} })v_{L} - (A_{R,H}^{m_{1} } - A_{S,H}^{m_{1} })v_{L} + v_{L}(\varDelta ^{R} +\varDelta ^{S}) {}\\ & & + (A_{R,H}^{m_{1} } - A_{S,H}^{m_{1} })(v_{L} - v_{H}) {}\\ & \stackrel{}{\leq }& 2v_{L}(\varDelta ^{R} +\varDelta ^{S}) + (A_{ R,H}^{m_{1} } - A_{S,H}^{m_{1} })(v_{L} - v_{H}) {}\\ \end{array}$$

We thus obtain:

$$\displaystyle\begin{array}{rcl} & \frac{c_{L}-c_{H}} {v_{H}-v_{L}} \geq -2(\varDelta ^{R} +\varDelta ^{S}) \frac{v_{L}} {v_{H}-v_{L}} + (A_{R,H}^{m_{1}} - A_{S,H}^{m_{1}}),& {}\\ & \frac{c_{L}-c_{H}} {v_{H}-v_{L}} + 2(\varDelta ^{R} +\varDelta ^{S}) \frac{v_{L}} {v_{H}-v_{L}} \geq (A_{R,H}^{m_{1}} - A_{S,H}^{m_{1}}). & {}\\ \end{array}$$

The other inequalities follows in the same manner. This completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Allon, G., Bassamboo, A. (2017). Buying from the Babbling Retailer? The Impact of Availability Information on Customer Behavior. In: Ha, A., Tang, C. (eds) Handbook of Information Exchange in Supply Chain Management. Springer Series in Supply Chain Management, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-32441-8_12

Download citation

Publish with us

Policies and ethics