Skip to main content

Drought Stress Tolerance in Plants: Insights from Transcriptomic Studies

  • Chapter
  • First Online:

Abstract

The availability of water is of vital importance to all living things, and it is critical in many parts of the planet. The situation is getting worse given the expected growth of world population and the growing demand for food. Thus, the rational use of water is imperative in any production system, including agriculture. The improvement of plant performance under drought stress is a crucial objective of breeding programs worldwide. To achieve this goal is not a simple task as traditional plant breeding requires many selection cycles comprising different trials at different locations and over several years. In addition to the expression of many genes, there is an interaction between the genotype and the environment, being expressed in the phenotype. In this context, plant transcriptomics emerged from technologies that allow evaluating genome-wide expression profiles, taking great benefit from deep sequencing analysis. This chapter aims critically to analyze transcriptomics studies covering drought tolerance of plants. It considers the different strategies to drought stress simulation assays, the molecular approaches, the genes responding to the stimulus, and data validation. Also provided is an overview on transgeny and patents related to drought-tolerant plants. This study also provides the basis to help breeders in further studies and decision making in their breeding programs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656. doi:10.1126/science.2047873

    Article  CAS  PubMed  Google Scholar 

  2. Akdogan G, Tufekci ED, Uranbey S, Unver T (2015) Mirna-based drought regulation in wheat. Funct Integr Genomics: 1–13. doi:10.1007/s10142-015-0452-1

    Google Scholar 

  3. Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484. doi:10.1007/s11103-005-0352-1

    Article  CAS  PubMed  Google Scholar 

  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J M Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  Google Scholar 

  5. Ambrosone A, Batelli G, Nurcato R, Aurilia V, Punzo P, Bangarusamy DK, Ruberti I, Sassi M, Leone A, Costa A, Grillo S (2015) The Arabidopsis rna-binding protein atrgga regulates tolerance to salt and drought stress. Plant Physiol 168:292–306. doi:10.1104/pp.114.255802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amudha J, Balasubramani G (2011) Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotechnol Mol Biol Rev 6:31–58

    CAS  Google Scholar 

  7. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi:10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  8. Andrade PP, Parrott W, Roca M (eds) (2012) Guía para la evaluación de riesgo ambiental de organismos genéticamente modificados. Embrapa Arroz e Feijão-Livros científicos (Alice), São Paulo, pp 1–140

    Google Scholar 

  9. Asmann YW, Wallace MB, Thompson EA (2008) Transcriptome profiling using next-generation sequencing. Gastroenterology 135:1466–1468. doi:10.1053/j.gastro.2008.09.042

    Article  CAS  PubMed  Google Scholar 

  10. Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI, Poland GA, Wieben ED, Kocher JPA (2009) 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genom 10:531. doi:10.1186/1471-2164-10-531

    Article  CAS  Google Scholar 

  11. Athar HR, Ashraf M (2009) Strategies for crop improvement against salinity and drought stress: an overview. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress: improving crop efficiency, 3rd edn. Dodrecht, The Netherlands, pp 1–16

    Chapter  Google Scholar 

  12. Avramova V, AbdElgawad H, Zhang Z, Fotschki B, Casadevall R, Vergauwen L, Knapen D, Taleisnik E, Guisez Y, Asard H, Beemster GTS (2015) Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol 169:1382–1396. doi:10.1104/pp.15.00276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bartels D, Souer E (2004) Molecular responses of higher plants to dehydration. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Springer, Heidelberg, pp 9–38

    Google Scholar 

  14. Benko-Iseppon AM, Soares-Cavalcanti NM, Belarmino LC, Bezerra Neto JP, Amorim LLB, Fereira Neto JRC, Pandolfi V, Azevedo HMA, Silva RLO, Santos MG, Alves MV, Kido EA (2011) Prospecção de Genes de Resistência à Seca e à Salinidade em Plantas Nativas e Cultivadas. Rev Bras Geo Fis 6:1112–1134

    Google Scholar 

  15. Bhatnagar-Mathur P, Rao JS, Vadez V, Dumbala SR, Rathore A, Yamaguchi-Shinozaki K, Sharma KK (2014) Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed 33:327–340. doi:10.1007/s11032-013-9952-7

    Article  CAS  Google Scholar 

  16. Blakeney M (2012) Patenting of plant varieties and plant breeding methods. J Exp Bot 63:1069–1074. doi:10.1093/jxb/err368

    Article  CAS  PubMed  Google Scholar 

  17. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634. doi:10.1038/76469

    Article  CAS  PubMed  Google Scholar 

  18. Bustin S, Benes V, Garson J (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. doi:10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  19. Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FS, Olsvik PA, Penning LC, Toegel S (2010) MIQE précis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 11:74. doi:10.1186/1471-2199-11-74

    Article  PubMed  PubMed Central  Google Scholar 

  20. Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B (2014) Overexpression of a calcium-dependent protein kinase confers salt and drough tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165:688–704. doi:10.1104/pp.113.230268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655. doi:10.1016/j.cell.2009.01.035.Origins

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caruso A, Chefdor F, Carpin S, Depierreux C, Delmotte FM, Kahlem G, Morabito D (2008) Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG 6000 in Populus canadensis leaves. J Plant Physiol 165:932–941. doi:10.1016/j.jplph.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  23. Carvalho MH (2008) Drought stress and reactive oxygen species. Plant Signal Behav 3:156–165. doi:10.4161/psb.3.3.5536

    Article  Google Scholar 

  24. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264. doi:10.1071/FP02076

    Article  CAS  Google Scholar 

  25. Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32(Suppl):490–495. doi:10.1038/ng1031

    Article  CAS  PubMed  Google Scholar 

  26. Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779. doi:10.1104/pp.113.220921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Costa MCD, Righetti K, Nijveen H, Yazdanpanah F, Ligterink W, Buitink J, Hilhorst HW (2015) A gene co-expression network predicts functional genes controlling the re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds. Planta 242:435–449. doi:10.1007/s00425-015-2283-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Silva RLO, Silva MD, Ferreira Neto JRC, de Nardi CH, Chabregas SM, Burnquist WL, Kahl G, Benko-Iseppon AM, Kido EA (2014) Validation of novel reference genes for reverse transcription quantitative real-time PCR in drought-stressed sugarcane. Sci World J 2014:357052. doi:10.1155/2014/357052

    Google Scholar 

  29. Deikman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr Opin Biotechnol 23:243–250. doi:10.1016/j.copbio.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  30. Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:70. doi:10.1186/1471-2229-11-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deyholos MK (2010) Making the most of drought and salinity transcriptomics. Plant, Cell Environ 33:648–654. doi:10.1111/j.1365-3040.2009.02092.x

    Article  CAS  Google Scholar 

  32. Diamond v Chakratbarty (1980) The US Supreme Court. US Patent, 79–136, 16 Jun 1980

    Google Scholar 

  33. Ekblom R, Galindo J (2010) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb) 107:1–15. doi:10.1038/hdy.2010.152

    Article  Google Scholar 

  34. Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10:637–643. doi:10.1038/nrm2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan Y, Wang Q, Kang L, Liu W, Xu Q, Xing S, Sang T (2015) Transcriptome-wide characterization of candidate genes for improving the water use efficiency of energy crops grown on semiarid land. J Exp Bot 66:6415–6429. doi:10.1093/jxb/erv353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689. doi:10.1007/s00018-014-1767-0

    Article  CAS  PubMed  Google Scholar 

  37. Ferreira Neto JRC, Pandolfi V, Guimaraes FCM, Benko-Iseppon AM, Romero C, Silva RLDO, Rodrigues FA, Abdelnoor RV, Nepomuceno AL, Kido EA (2013) Early transcriptional response of soybean contrasting accessions to root dehydration. PLoS ONE 8:e83466. doi:10.1371/journal.pone.0083466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. García-Calderón M, Pons-Ferrer T, Mrázova A, Pal’ove-Balang P, Vilkova M, Pérez-Delgado CM, Veja JM, Eliasová M, Márquez AJ, Betti M (2015) Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Front Plant Sci 6:1–16. doi:10.3389/fpls.2015.00760

    Article  Google Scholar 

  39. Gong L, Zhang H, Gan X, Zhang L, Chen Y, Nie F, Shi L, Li M, Guo Z, Zhang G, Song Y (2014) Transcriptome profiling of the potato (Solanum tuberosum L.) plant under drought stress and water-stimulus conditions. PLoS ONE 10:e0128041–e0128041. doi:10.1371/journal.pone.0128041

    Article  CAS  Google Scholar 

  40. Govind G, Vokkaliga Thammegowda H, Jayaker Kalaiarasi P, Iyer DR, Muthappa SK, Nese S, Makarla UK (2009) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genomics 281:591–605. doi:10.1007/s00438-009-0432-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E (2015) Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms. Front Plant Sci 6:57. doi:10.3389/fpls.2015.00057

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60:3531–3544. doi:10.1093/jxb/erp194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ha CV, Watanabe Y, Tran UT, Le DT, Tanaka M, Nguyen KH, Seki M, Nguyen DV, Tran LS (2015) Comparative analysis of root transcriptomes from two contrasting drought-responsive Williams 82 and DT2008 soybean cultivars under normal and dehydration conditions. Front Plant Sci 6:551. doi:10.3389/fpls.2015.00551

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hadiarto T, Tran LSP (2011) Progress studies of drought-responsive genes in rice. Plant Cell Rep 30:297–310. doi:10.1007/s00299-010-0956-z

    Article  CAS  PubMed  Google Scholar 

  45. Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38:1–7. doi:10.1093/nar/gkq224

    Article  CAS  Google Scholar 

  46. Hichri I, Muhovski Y, Clippe A, Žižková E, Dobrev PI, Motyka V, Lutts S (2015) SlDREB2, a tomato dehydration responsive element binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. Plant Cell Environ n/a–n/a. doi:10.1111/pce.12591

    Google Scholar 

  47. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052. doi:10.1111/j.1365-313X.2010.04124.x

    Article  CAS  PubMed  Google Scholar 

  48. Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, Kavikishor PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931. doi:10.1111/j.1467-7652.2011.00625.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987. doi:10.1007/s11033-011-0823-1

    Article  PubMed  CAS  Google Scholar 

  50. Hübner S, Korol AB, Schmid KJ (2015) RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC Plant Biol 15:134. doi:10.1186/s12870-015-0528-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27:297–306. doi:10.1002/btpr.514

    Article  CAS  PubMed  Google Scholar 

  52. Jinyou D, Xiaoyang C, Wei L, Qiong G (2004) Osmoregulation mechanism of drought stress and genetic engineering strategies for improving drought resistance in plant. Forestry Stud China 6:56–62. doi:10.1007/s11632-004-0021-5

    Article  Google Scholar 

  53. Johnson G, Nour AA, Nolan T, Huggett J, Bustin S (2014) Minimum information necessary for quantitative real-time PCR experiments. Methods Mol Biol 1160:5–17. doi:10.1007/978-1-4939-0733-5_2

    Article  CAS  PubMed  Google Scholar 

  54. Kahl G, Meksem K (eds) (2008) The handbook of plant functional genomics: concepts and protocols. Wiley, New Jersey

    Google Scholar 

  55. Kang Y, Han Y, Torres-Jerez I, Wang M, Tang Y, Monteros M, Udvardi M (2011) System responses to long-term drought and re-watering of two contrasting alfalfa varieties. Plant J 68:871–889. doi:10.1111/j.1365-313X.2011.04738.x

    Article  CAS  PubMed  Google Scholar 

  56. Kawaguchi R, Girke T, Bray EA, Bailey-Serres J (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J 38:823–839. doi:10.1111/j.1365-313X.2004.02090.x

    Article  CAS  PubMed  Google Scholar 

  57. Kido EA, Barbosa PK, Neto JR, Pandolfi V, Houllou-Kido LM, Crovella S, Molina C, Kahl G, Benko-Iseppon AM (2011) Identification of plant protein kinases in response to abiotic and biotic stresses using SuperSAGE. Curr Protein Pept Sci 12:643–656

    Article  CAS  PubMed  Google Scholar 

  58. Kido EA, Ferreira Neto JRC, Silva RLO, Andrade PP, Benko-Iseppon AM (2012) Gene discovery and protection: new trends and market restrictions on stress tolerant transgenic sugarcane. Nova Science Publishers, New York, p 62

    Google Scholar 

  59. Kido EA, Ferreira Neto JRC, Silva RLO, Belarmino LC, Bezerra Neto JP, Soares-Cavalcanti NM, Pandolfi V, Silva MD, Nepomuceno AL, Benko-Iseppon AM (2013) Expression dynamics and genome distribution of osmoprotectants in soybean: identifying important components to face abiotic stress. BMC Bioinform 14:S7. doi:10.1186/1471-2105-14-S1-S7

    Article  CAS  Google Scholar 

  60. Kido EA, Ferreira Neto JR, Kido SAB, Pandolfi and V, Benko-Iseppon AM (2013) DeepSuperSAGE in a friendly bioinformatic approach: Identifying molecular targets responding to abiotic stress in plants. In: Gaur RK, Sharma P (eds) Molecular approaches in plant abiotic stress. CRC Press, USA, pp 1–17

    Google Scholar 

  61. Kreps J, Wu Y, Chang H, Zhu T, Wang X, Harper J (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141. doi:10.1104/Pp.008532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kumar R, Solankey S, Singh M (2012) Breeding for drought tolerance in vegetables. Veg Sci 39:1–15

    Google Scholar 

  63. Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Ham LH, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS ONE 7:e49522. doi:10.1371/journal.pone.0049522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lenka SK, Katiyar A, Chinnusamy V, Bansal KC (2011) Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J 9:315–327. doi:10.1111/j.1467-7652.2010.00560.x

    Article  CAS  PubMed  Google Scholar 

  65. Li K, Ramchandran R (2010) Natural antisense transcript: a concomitant engagement with protein-coding transcript. Oncotarget 1:447–452

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li ZK, Fu B-YY, Gao Y-MM, Xu J-LL, Ali J, Lafitte HRR, Jiang YZ, Rey JD, Vijayakumar CHMHM, Maghirang R, Zheng T-QQ, Zhu LH (2005) Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol 59:33–52. doi:10.1007/s11103-005-8519-3

    Article  CAS  PubMed  Google Scholar 

  67. Li DD, Wu YJ, Ruan XM, Li B, Zhu L, Wang H, Li XB (2009) Expressions of three cotton genes encoding the PIP proteins are regulated in root development and in response to stresses. Plant Cell Rep 28:291–300. doi:10.1007/s00299-008-0626-6

    Article  CAS  PubMed  Google Scholar 

  68. Li Z, Hu Q, Zhou M, Vandenbrink J, Li D, Menchyk N, Reighard S, Norris A, Liu H, Sun D, Luo H (2013) Heterologous expression of OsSIZ1, a rice SUMO E3 ligase, enhances broad abiotic stress tolerance in transgenic creeping bentgrass. Plant Biotechnol J 11:432–445. doi:10.1111/pbi.12030

    Article  CAS  PubMed  Google Scholar 

  69. Lima JM, Nath M, Dokku P, Raman KV, Kulkarni KP, Vishwakarma C, Sahoo SP, Mohapatra UB, Mithra SVA, Chinnusamy V, Robin S, Sarla N, Seshashaysee M, Singh K, Singh AK, Singh NK, Sharma RP, Mohapatra T (2015) Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AoB Plants 7:plv023. doi:10.1093/aobpla/plv023

    Google Scholar 

  70. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406. doi:10.1105/tpc.10.8.1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu X, Zhai S, Zhao Y, Sun B, Liu C, Yang A, Zhang J (2013) Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize. Plant, Cell Environ 36:1037–1055. doi:10.1111/pce.12040

    Article  CAS  Google Scholar 

  72. Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q (2015) Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol 15:152. doi:10.1186/s12870-015-0511-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lorkowski S, Cullen P (eds) (2003) Analysing gene expression: a handbook of methods, possibilities and pitfalls. Wiley-VCH Verlag, GmbH & Co, Kga, Germany

    Google Scholar 

  74. Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615. doi:10.1007/s00425-008-0857-3

    Article  CAS  PubMed  Google Scholar 

  75. Lu N, Wei B, Sun Y, Liu X, Chen S, Zhang W, Zhang Y, Li Y (2014) Field supervisory test of DREB-transgenic populus: salt tolerance, long-term gene stability and horizontal gene transfer. Forests 5:1106–1121. doi:10.3390/f5051106forests

    Article  Google Scholar 

  76. Marcolino-Gomes J, Rodrigues FA, Oliveira MCN, Farias JRB, Neumaier N, Abdelnoor RV, Marcelino-Guimarães FC, Nepomuceno AL (2013) Expression patterns of GmAP2/EREB-like transcription factors involved in soybean responses to water deficit. PLoS ONE 8:e62294. doi:10.1371/journal.pone.0062294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsui A, Nguyen A, Nakaminami K, Seki M (2013) Arabidopsis non-coding RNA regulation in abiotic stress responses. Int J Mol Sci 14:22642–22654. doi:10.3390/ijms141122642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R (2003) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100:15718–15723. doi:10.1073/pnas.2536670100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Matsumura H, Ito A, Saitoh H, Winter P, Kahl G, Reuter M, Krüger DH, Terauchi R (2005) SuperSAGE. Cell Microbiol 7:11–18. doi:10.1111/j.1462-5822.2004.00478.x

    Article  CAS  PubMed  Google Scholar 

  80. Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408. doi:10.1038/nrg3683

    Article  CAS  PubMed  Google Scholar 

  81. Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431. doi:10.1016/j.plantsci.2008.02.005

    Article  CAS  Google Scholar 

  82. McWilliam J (1989) The dimensions of drought. In: Baker F (ed) Drought resistance in cereals. Wallingford, UK, pp 1–11

    Google Scholar 

  83. Meyers BC, Tej SS, Vu TH, Haudenschild CD, Agrawal V, Edberg SB, Ghazal H, Decola S (2004) The use of MPSS for whole-genome transcriptional analysis in Arabidopsis. Genome Res 14:1641–1653. doi:10.1101/gr.2275604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Micheletto S, Rodriguez-Uribe L, Hernandez R, Richins RD, Curry J, O’Connell MA (2007) Comparative transcript profiling in roots of Phaseolus acutifolius and P. vulgaris under water deficit stress. Plant Sci 173:510–520. doi:10.1016/j.plantsci.2007.08.003

    Article  CAS  Google Scholar 

  85. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467. doi:10.1111/j.1365-3040.2009.02041.x

    Article  CAS  Google Scholar 

  86. Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645. doi:10.1007/s00122-012-1904-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. doi:10.1016/j.tplants.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  88. Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genom 9:553. doi:10.1186/1471-2164-9-553

    Article  CAS  Google Scholar 

  89. Morin RD, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol R, Jones S, Marra M (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45:81–94. doi:10.2144/000112900

    Article  CAS  PubMed  Google Scholar 

  90. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  CAS  PubMed  Google Scholar 

  91. Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15:423–437. doi:10.1038/nrg3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628. doi:10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  93. Munnik T, Vermeer JEM (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant, Cell Environ 33:655–669. doi:10.1111/j.1365-3040.2009.02097.x

    Article  CAS  Google Scholar 

  94. Munns R, James RA, Sirault XR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507. doi:10.1093/jxb/erq199

    Article  CAS  PubMed  Google Scholar 

  95. Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell Environ 33:670–685. doi:10.1111/j.1365-3040.2009.02107.x

    Article  CAS  Google Scholar 

  96. Nguyen QN, Lee YS, Cho LH, Jeong HJ, An G, Jung KH (2015) Genome-wide identification and analysis of Catharanthus roseus RLK1-like kinases in rice. Planta 241:603–613. doi:10.1007/s00425-014-2203-2

    Article  CAS  PubMed  Google Scholar 

  97. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64:445–458. doi:10.1093/jxb/ers354

    Article  CAS  PubMed  Google Scholar 

  98. Passioura J (1997) Drought and drought tolerance. Drought tolerance in higher plants: genetical, physiological and molecular biological analysis. Plant Growth Regul 20:79–83

    Article  Google Scholar 

  99. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515. doi:10.1023/B:BILE.0000019559.84305.47

    Article  CAS  PubMed  Google Scholar 

  100. Pieczynski M, Marczewski W, Hennig J, Dolata J, Bielewicz D, Piontek P, Wyrzykowska A, Krusiewicz D, Strzelczyk-Zyta D, Konopka-Postupolska D, Krzeslowska M, Jarmolowski A, Szweykowska-Kulinska Z (2013) Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnol J 11:459–469. doi:10.1111/pbi.12032

    Article  CAS  PubMed  Google Scholar 

  101. Pruthvi V, Narasimhan R, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS ONE 9:e111152. doi:10.1371/journal.pone.0111152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. doi:10.1016/j.jplph.2004.01.013

    Article  CAS  Google Scholar 

  103. Rédei GP (2008) Massively parallel signature sequencing (MPSS). Encyclopedia of genetics, genomics, proteomics and informatics. Springer, Heidelberg

    Book  Google Scholar 

  104. Reguera M, Peleg Z, Blumwald E (2012) Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim Biophys Acta—Gene Regul Mech 1819:186–194. doi:10.1016/j.bbagrm.2011.08.005

    Article  CAS  Google Scholar 

  105. Rodrigues FA, Fuganti-Pagliarini R, Marcolino-Gomes J, Nakayama TJ, Molinari HBC, Lobo FP, Harmon FG, Nepomuceno AL (2015) Daytime soybean transcriptome fluctuations during water deficit stress. BMC Genom 16:505. doi:10.1186/s12864-015-1731-x

    Article  CAS  Google Scholar 

  106. Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403. doi:10.1016/j.tplants.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  107. Rowland O, Ludwig AA, Merrick CJ, Baillieul F, Tracy FE, Durrant WE, Fritz-Laylin L, Nekrasov V, Sjölander K, Yoshioka H, Jones JDG (2005) Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato. Plant Cell 17:295–310. doi:10.1105/tpc.104.026013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW (2002) Using the transcriptome to annotate the genome. Nature Biotechnol 20:508–512. doi:10.1038/nbt0502-508

    Article  CAS  Google Scholar 

  109. Saha G, Park J-I, Jung H-J, Ahmed NU, Kayum A, Chung M-Y, Hur Y, Cho Y-G, Watanabe M, Nou I-S (2015) Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genom 16:1–21. doi:10.1186/s12864-015-1349-z

    Article  CAS  Google Scholar 

  110. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (80-) 270:467–470. doi:10.1126/science.270.5235.467

    Google Scholar 

  111. Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302. doi:10.1016/j.pbi.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  112. Shimkets RA (2004) Gene expression profiling. Springer, Heidelberg

    Book  Google Scholar 

  113. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223. doi:10.1016/S1369-5266(00)00067-4 [pii]

  114. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Expl Bot 58:221–227. doi:10.1093/jxb/erl164

    Article  CAS  Google Scholar 

  115. Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14:869–876. doi:10.1105/tpc.000901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ (2012) Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1002514. doi:10.1371/journal.ppat.1002514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Somvanshi VS (2009) Patenting drought tolerance in organisms. Recent Pat DNA Gene Seq 3:16–25

    Article  CAS  PubMed  Google Scholar 

  118. Steinemann S, Zeng Z, McKay A, Heuer S, Langridge P, Huang CY (2015) Dynamic root responses to drought and rewatering in two wheat (Triticum aestivum) genotypes. Plant Soil 391:139–152. doi:10.1007/s11104-015-2413-9

    Article  CAS  Google Scholar 

  119. Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am J Bot 99:257–266. doi:10.3732/ajb.1100292

    Article  CAS  PubMed  Google Scholar 

  120. Sun L, Huang L, Hong Y, Zhang H, Song F, Li D (2015) Comprehensive analysis suggests overlapping expression of rice ONAC transcription factors in abiotic and biotic stress responses. Int J Mol Sci 16:4306–4326. doi:10.3390/ijms16024306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sunkar R, Bartels D, Kirch H-H (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J 35:452–464. doi:10.1046/j.1365-313X.2003.01819.x

    Article  CAS  PubMed  Google Scholar 

  122. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43. doi:10.1111/nph.12797

    Article  PubMed  Google Scholar 

  123. Tamiru M, Undan JR, Takagi H, Abe A, Yoshida K, Undan JQ, Natsumel S, Uemural A, Saitohl H, Matsumura H, Urasaki N, Yokota T, Terauchi R (2015) A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.). Plant Mol Biol 88:85–99. doi:10.1007/s11103-015-0310-5

    Article  CAS  PubMed  Google Scholar 

  124. Tardieu F, Tuberosa R (2010) Dissection and modelling of abiotic stress tolerance in plants. Curr Opin Plant Biol 13:206–212. doi:10.1016/j.pbi.2009.12.012

    Article  PubMed  Google Scholar 

  125. Terauchi R, Matsumura H, Krüger DH, Kahl G (2008) SuperSAGE: the most advanced transcriptome technology for functional genomics. In: Kahl G, Meksem K (eds) The handbook of plant functional genomics: concepts and protocols. Wiley, New Jersey, pp 37–54

    Chapter  Google Scholar 

  126. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. doi:10.1038/35048692

    Article  Google Scholar 

  127. Tian XJ, Long Y, Wang J, Zhang JW, Wang YY, Li WM, Peng YF, Yuan QH, Pei XW (2015) De novo transcriptome assembly of common wild rice (Oryza rufipogon griff.) and discovery of drought-response genes in root tissue based on transcriptomic data. PLoS ONE 10:e0131455. doi:10.1371/journal.pone.0131455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403. doi:10.1016/j.pbi.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  129. Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412. doi:10.1016/j.tplants.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  130. Ueda A, Kathiresan A, Inada M, Narita Y, Nakamura T, Shi W, Takabe T, Bennett J (2004) Osmotic stress in barley regulates expression of a different set of genes than salt stress does. J Exp Bot 55:2213–2218. doi:10.1093/jxb/erh242

    Article  CAS  PubMed  Google Scholar 

  131. UNFPA United Nations Population Fund (1969) The UNFPA register. http://www.unfpa.org/. Accessed 20 Aug 2015

  132. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  133. Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KH, Town CD, Hoisington DA (2009) A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genom 10:523. doi:10.1186/1471-2164-10-523

    Article  CAS  Google Scholar 

  134. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science (80-) 270:484–487. doi:10.1126/science.270.5235.484

    Google Scholar 

  135. Verkest A, Byzova M, Martens C, Willems P, Verwulgen T, Slabbinck B, Rombaut D, De Velde HV, Vandepoele K, Standaert E, Peeters M, De Block M (2015) Selection for improved energy use efficiency and drought tolerance in canola results in distinct transcriptome and epigenome changes. Plant Physiol 168:1338–1350. doi:10.1104/pp.15.00155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. In: Fornara F (ed) The molecular genetics of floral transition and flower development. Advances in botanical research, vol 72, Curr Opin Plant Biol. Elsevier, California, pp 240–245

    Google Scholar 

  137. Villalobos MA, Bartels D, Iturriaga G (2004) Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol 135:309–324. doi:10.1104/pp.103.034199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi:10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang L, Li P, Brutnell TP (2010) Exploring plant transcriptomes using ultra high-throughput sequencing. Briefings Funct Genomics Proteomics 9:118–128. doi:10.1093/bfgp/elp057

    Article  CAS  Google Scholar 

  140. Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z (2011) Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genom 12:149. doi:10.1186/1471-2164-12-149

    Article  CAS  Google Scholar 

  141. Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, Xu J, Chua NH (2014) Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res 24:444–453. doi:10.1101/gr.165555.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang T-Z, Liu M, Zhao M-G, Chen R, Zhang W-H (2015) Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol 15:131. doi:10.1186/s12870-015-0530-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Wood AJ (2005) Eco-physiological adaptations to limited water environments. In: Jenks MA, Hasegawa PM (eds) Plant abioticstress, 1st edn. Wiley, New York

    Google Scholar 

  144. Wu H, Zhang Y, Zhang W, Pei X, Zhang C, Jia S, Li W (2015) Transcriptomic analysis of the primary roots of Alhagi sparsifolia in response to water stress. PLoS ONE 10:e0120791. doi:10.1371/journal.pone.0120791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Xu Z, Zhou G, Shimizu H (2010) Plant responses to drought and rewatering. Plant Signal Behav 5:649–654. doi:10.4161/psb.5.6.11398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol 15:141. doi:10.1186/s12870-015-0532-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Yancey PH (2001) Water stress, osmolytes and proteins. Am Zool 41:699–709. doi:10.1093/icb/41.4.699

    Google Scholar 

  148. Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D, Xing Y, Zhang Q (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1213–1228. doi:10.1534/genetics.105.045062

    Article  PubMed  PubMed Central  Google Scholar 

  149. Zadražnik T, Hollung K, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J (2013) Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics 78:254–272. doi:10.1016/j.jprot.2012.09.021

    Article  PubMed  CAS  Google Scholar 

  150. Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409. doi:10.1007/s10529-010-0436-0

    Article  CAS  PubMed  Google Scholar 

  151. Zhang W, Han Z, Guo Q, Liu Y, Zheng Y, Wu F, Jin W (2014) Identification of maize long non-coding RNAs responsive to drought stress. PLoS ONE 9:e98958. doi:10.1371/journal.pone.0098958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590. doi:10.1016/j.bbrc.2007.01.022

    Article  CAS  PubMed  Google Scholar 

  153. Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, Huang Q, Guo X, Dong Z, Wang H, Wang G (2010) Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol 72:407–421. doi:10.1007/s11103-009-9579-6

    Article  CAS  PubMed  Google Scholar 

  154. Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q, Fan L, Deng XW (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608. doi:10.1007/s11103-006-9111-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhou Y, Gao F, Liu R, Feng J, Li H (2012) De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus. BMC Genom 13:266. doi:10.1186/1471-2164-13-266

    Article  CAS  Google Scholar 

  156. Zhou S, Han Y-Y, Chen Y, Kong X, Wang W (2015) The involvement of expansins in response to water stress during leaf development in wheat. J Plant Physiol 183:64–74. doi:10.1016/j.jplph.2015.05.012

    Article  CAS  PubMed  Google Scholar 

  157. Zhu QH, Stephen S, Taylor J, Helliwell CA, Wang MB (2014) Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytol 201:574–584. doi:10.1111/nph.12537

    Article  CAS  PubMed  Google Scholar 

  158. Zhuang J, Zhang J, Hou X-L, Wang F, Xiong A-S (2014) Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotic stress in vegetable crops. CRC Crit Rev Plant Sci 33:225–237. doi:10.1080/07352689.2014.870420

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Brazilian institutions FINEP (Financiadora de Estudos e Projetos), FACEPE (Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éderson Akio Kido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kido, É.A., Ferreira-Neto, J.R.C., Pandolfi, V., de Melo Souza, A.C., Benko-Iseppon, A.M. (2016). Drought Stress Tolerance in Plants: Insights from Transcriptomic Studies. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-32423-4_6

Download citation

Publish with us

Policies and ethics