Skip to main content

Genetically Modified Crops with Drought Tolerance: Achievements, Challenges, and Perspectives

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 2

Abstract

Drought stress is a major cause of reduction in crop yield. In the past 10 years, global food insecurity has been aggravated by human population growth, environmental deterioration, and climate change. Hence, developing drought-tolerant crops by modern biotechnology may contribute to global food security because drought-tolerant crops may become a factor to maintain plant growth and productivity, and to increase the area of arable land worldwide. Recently, studies have started to bear fruit on the molecular mechanisms of drought stress responses and, in parallel, genetically modified crops (GM crops) with drought tolerance have also shown promising results that can be ultimately applied to agriculture. However, broad adoption of GM crops, including crops with drought tolerance, will depend on adequate safety assessment and related public acceptance. Thus, a food and environmental safety assessment is generally required by different jurisdictions prior to introducing GM crops with drought tolerance to the market. Although worldwide harmonized approaches are currently provided, risk assessors still face challenges to apply the comparative approach to assess food and environmental safety of GM crops with drought tolerance. In this chapter, we discuss current developments in the field of crops with drought tolerance as well as issues concerning the food and environmental safety assessment of these crops, including achievements, challenges, and perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andow DA, Zwahlen C (2006) Assessing environmental risks of transgenic plants. Ecol Lett 9:196–214

    Article  CAS  PubMed  Google Scholar 

  2. Bakhsh A, Hussain T (2015) Engineering crop plants against abiotic stress: current achievements and prospects. Emirates J Food Agri 27:24–39

    Google Scholar 

  3. Barker T, Campos H, Cooper M, Dolan D, Edmeades G, Habben J, Schussler J, Wright D, Zinselmeier C (2005) Improving drought tolerance in maize. Plant Breed Rev 25:173–253

    CAS  Google Scholar 

  4. Bartsch D (2009) Response to Wilkinson & Tepfer’s Fitness and beyond: preparing for the arrival of GM crops with ecologically important novel characters. Environ Biosaf Res 8:17–18

    Article  Google Scholar 

  5. BCH (2011) Guidance on risk assessment of living modified organisms. Risk assessment of living modified plants with tolerance to abiotic stress. http://bch.cbd.int/onlineconferences/guidancedoc_ra_abioticstress.shtml

  6. Beckie H, Harker K, Hall L, Warwick S, Légère A, Sikkema P, Clayton G, Thomas A, Leeson J, Séguin-Swartz G (2006) A decade of herbicide-resistant crops in Canada. Can J Plant Sci 86:1243–1264

    Article  Google Scholar 

  7. Beckie HJ, Owen MD (2007) Herbicide-resistant crops as weeds in North America. CAB Rev: Perspect Agri Vet Sci Nutr Nat Resour 44:1–22

    Google Scholar 

  8. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  CAS  PubMed  Google Scholar 

  9. Birch ANE, Griffiths BS, Caul S, Thompson J, Heckmann LH, Krogh PH, Cortet J (2007) The role of laboratory, glasshouse and field scale experiments in understanding the interactions between genetically modified crops and soil ecosystems: a review of the ECOGEN project. Pedobiologia 51:251–260

    Article  CAS  Google Scholar 

  10. Brune PD, Culler AH, Ridley WP, Walker K (2013) Safety of GM crops: compositional analysis. J Agric Food Chem 61:8243–8247

    Article  CAS  PubMed  Google Scholar 

  11. Budak H, Kantar M, Kurtoglu KY (2013) Drought tolerance in modern and wild wheat. Sci World J 2013:548246

    Article  Google Scholar 

  12. Canadian-Government (2012) Food and drug regulations (current to June 27, 2012) Consolidated regulations of Canada (C.R.C.), Chapter 870. Ministry of Justice, Ottawa

    Google Scholar 

  13. Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chan ZL, Bigelow PJ, Loescher W, Grumet R (2012) Comparison of salt stress resistance genes in transgenic Arabidopsis thaliana indicates that extent of transcriptomic change may not predict secondary phenotypic or fitness effects. Plant Biotechnol J 10:284–300

    Article  PubMed  Google Scholar 

  15. Chandler S, Dunwell JM (2008) Gene flow, risk assessment and the environmental release of transgenic plants. Crit Rev Plant Sci 27:25–49

    Article  CAS  Google Scholar 

  16. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  17. Clement M, Lambert A, Herouart D, Boncompagni E (2008) Identification of new up-regulated genes under drought stress in soybean nodules. Gene 426:15–22

    Article  CAS  PubMed  Google Scholar 

  18. Cominelli E, Conti L, Tonelli C, Galbiati M (2013) Challenges and perspectives to improve crop drought and salinity tolerance. New Biotech 30:355–361

    Article  CAS  Google Scholar 

  19. Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Plant J 33:19–46

    Article  PubMed  Google Scholar 

  20. Costa TEMM, Dias APM, Scheidegger ÉMD, Marin VA (2011) Risk assessment of genetically modified organisms. Ciência & Saúde Coletiva 16:327–336

    Article  Google Scholar 

  21. Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574

    Article  CAS  PubMed  Google Scholar 

  22. de Jong TJ, Rong J (2013) Crop to wild gene flow: does more sophisticated research provide better risk assessment? Environ Sci Policy 27:135–140

    Article  Google Scholar 

  23. de Paiva Rolla AA, Carvalho JdFC, Fuganti-Pagliarini R, Engels C, Do Rio A, Marin SRR, de Oliveira MCN, Beneventi MA, Marcelino-Guimaraes FC, Farias JRB (2014) Phenotyping soybean plants transformed with rd29A: AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Res 23:75–87

    Article  PubMed  Google Scholar 

  24. Deikman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr Opin Biotechnol 23:243–250

    Article  CAS  PubMed  Google Scholar 

  25. Dogan E, Kirnak H, Copur O (2007) Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crops Res 103:154–159

    Article  Google Scholar 

  26. dos Reis SP, Lima AM, de Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647

    Article  PubMed  PubMed Central  Google Scholar 

  27. EC (2013) Commission implementing regulation (EU) No 503/2013 of 3 April 2013 on applications for authorisation of genetically modified food and feed in accordance with regulation (EC) No 1829/2003 of the European Parliament and of the Council and amending Commission Regulations (EC) No 641/2004 and (EC) No 1981/2006. Official J Eur Union 8.6.2013, No L 157/1

    Google Scholar 

  28. EFSA (2010) Guidance on the environmental risk assessment of genetically modified plants. EFSA J 8:1879 (111 pp)

    Google Scholar 

  29. EFSA (2011) Guidance document for the risk assessment of genetically modified plants and derived food and feed by the scientific panel on genetically modified organisms (GMO)—including draft document updated in 2008. EFSA J 9:37

    Google Scholar 

  30. ESFA (2004) Opinion of the scientific panel on genetically modified organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. ESFA J (http://www.efsa.europa.eu/cs/BlobServer/Scientific_Opinion/opinion_gmo_05_en1,2.pdf?ssbinary=true) 48, 1–18

  31. Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  32. FAO U (2009) World summit on food security. Food and agriculture organization of the United Nations Rome

    Google Scholar 

  33. FAO/WHO (1996) Biotechnology and food safety. Report of a joint FAO/ WHO consultation, Rome, Italy. FAO Food and nutrition paper 61, Food and Agriculture Organisation of the United Nations, Rome, ftp://ftp.fao.org/es/esn/food/biotechnology.pdf

    Google Scholar 

  34. FDA (1992) Statement of policy—foods derived from new plant varieties. Fed Reg 57:22984–23005

    Google Scholar 

  35. FDA (1997) Consultation procedures under FDA’s 1992 statement of policy—foods derived from new plant varieties. Food and Drug Administration, Washington

    Google Scholar 

  36. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5

    Google Scholar 

  37. Group WB (2015) Rapid, climate-informed development needed to keep climate change from pushing more than 100 million people into poverty by 2030

    Google Scholar 

  38. Hadiarto T, Tran L-SP (2011) Progress studies of drought-responsive genes in rice. Plant Cell Rep 30:297–310

    Article  CAS  PubMed  Google Scholar 

  39. Halford NG, Hudson E, Gimson A, Weightman R, Shewry PR, Tompkins S (2014) Safety assessment of genetically modified plants with deliberately altered composition. Plant Biotechnol J 12:651–654

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hartman Y, Hooftman DAP, Uwimana B, van de Wiel CCM, Smulders MJM, Visser RGF, van Tienderen PH (2012) Genomic regions in crop-wild hybrids of lettuce are affected differently in different environments: implications for crop breeding. Evol Appl 5:629–640

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  PubMed  Google Scholar 

  43. Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27:297–306

    Article  CAS  PubMed  Google Scholar 

  44. Hussain SS, Raza H, Afzal I, Kayani MA (2012) Transgenic plants for abiotic stress tolerance: current status. Arch Agron Soil Sci 58:693–721

    Article  CAS  Google Scholar 

  45. Jeong JS, Kim YS, Baek KH, Jung H, Ha S-H, Do Choi Y, Kim M, Reuzeau C, Kim J-K (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11:101–114

    Article  CAS  PubMed  Google Scholar 

  47. Kim T-H (2014) Mechanism of ABA signal transduction: agricultural highlights for improving drought tolerance. J Plant Biol 57:1–8

    Article  Google Scholar 

  48. Kok EJ, Kuiper HA (2003) Comparative safety assessment for biotech crops. Trends Biotechnol 21:439–444

    Article  CAS  PubMed  Google Scholar 

  49. Kok EJ, Keijer J, Kleter GA, Kuiper HA (2008) Comparative safety assessment of plant-derived foods. Regul Toxicol Pharmacol 50:98–113

    Article  CAS  PubMed  Google Scholar 

  50. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kudoyarova GR, Kholodova VP, Veselov DS (2013) Current state of the problem of water relations in plants under water deficit. Russ J Plant Physiol 60:165–175

    Article  CAS  Google Scholar 

  52. Kuiper H, Kleter G, Noteborn H, Kok E (2001) Assessment of the food safety issues related to genetically modified foods. Plant J 27:503–528

    Article  CAS  PubMed  Google Scholar 

  53. Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108

    Article  CAS  PubMed  Google Scholar 

  54. Leprince O, Buitink J (2015) Introduction to desiccation biology: from old borders to new frontiers. Planta 242:369–378

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Zhang J, Zhang J, Hao L, Hua J, Duan L, Zhang M, Li Z (2013) Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnol J 11:747–758

    Article  CAS  PubMed  Google Scholar 

  56. Liang C, Prins TW, van de Wiel CCM, Kok EJ (2014) Safety aspects of genetically modified crops with abiotic stress tolerance. Trends Food Sci Technol 40:115–122

    Article  CAS  Google Scholar 

  57. Magyar-Tabori K, Mendler-Drienyovszki N, Dobranszki J (2011) Models and tools for studying drought stress responses in peas. Omics-a J Integr Biol 15:829–838

    Article  CAS  Google Scholar 

  58. Marshall A et al (2012) Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 24:2262–2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim et Biophys Acta-Gene Regul Mech 1819:86–96

    Article  CAS  Google Scholar 

  60. Monsanto-Company (2009) Petition for the determination of non-regulated status for MON 87460, www.aphis.usda.gov/biotechnology/not_reg.html

  61. Nickson TE (2008) Planning environmental risk assessment for genetically modified crops: problem formulation for stress-tolerant crops. Plant Physiol 147:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. OECD (1996) Food safety evaluation. Organisation for Economic Cooperation and Development, Paris, p 74

    Google Scholar 

  63. OGTR (2009) Risk assessment and risk management plan for DIR 095: limited and controlled release of sugarcane genetically modified for altered plant growth, enhanced drought tolerance, enhanced nitrogen use efficiency, altered sucrose accumulation, and improved cellulosic ethanol production from sugarcane biomass

    Google Scholar 

  64. Oh S-J, Kim YS, Kwon C-W, Park HK, Jeong JS, Kim J-K (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150:1368–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X (2011) Expression of an Arabidopsis vacuolar H + -pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  CAS  PubMed  Google Scholar 

  66. Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y, Burow M, Payton P, Blumwald E, Zhang H (2011) Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914

    Article  CAS  PubMed  Google Scholar 

  67. Redillas MC, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805

    Article  CAS  PubMed  Google Scholar 

  68. Reguera M, Peleg Z, Blumwald E (2012) Targeting, metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim et Biophys Acta-Gene Regul Mech 1819:186–194

    Article  CAS  Google Scholar 

  69. Saad ASI, Li X, Li H-P, Huang T, Gao C-S, Guo M-W, Cheng W, Zhao G-Y, Liao Y-C (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203:33–40

    Article  PubMed  Google Scholar 

  70. Sammons B, Whitsel J, Stork LG, Reeves W, Horak M (2014) Characterization of drought-tolerant maize MON 87460 for use in environmental risk assessment. Crop Sci 54:719–729

    Article  Google Scholar 

  71. Sharma P, Singh AK, Singh BP, Gaur SN, Arora N (2011) Allergenicity assessment of Osmotin, a pathogenesis-related protein, used for transgenic crops. J Agric Food Chem 59:9990–9995

    Article  CAS  PubMed  Google Scholar 

  72. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  73. Singh AK, Singh BP, Prasad G, Gaur SN, Arora N (2008) Safety assessment of bacterial choline oxidase protein introduced in transgenic crops for tolerance against abiotic stress. J Agric Food Chem 56:12099–12104

    Article  CAS  PubMed  Google Scholar 

  74. Stein AJ, Rodríguez-Cerezo E (2009) The global pipeline of new GM crops. Implications of asynchronous approval for international trade. European Commission, Joint Research Centre

    Google Scholar 

  75. Strauss SH (2003) Genomics, genetic engineering, and domestication of crops. Science 300:61

    Article  CAS  PubMed  Google Scholar 

  76. Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63:25–31

    Article  CAS  PubMed  Google Scholar 

  77. Thao NP, Tran LSP (2012) Potentials toward genetic engineering of drought-tolerant soybean. Crit Rev Biotechnol 32:349–362

    Article  PubMed  Google Scholar 

  78. Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6

    Google Scholar 

  79. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4:17–22

    Article  Google Scholar 

  80. Uwimana B, Smulders MJM, Hooftman DAP, Hartman Y, van Tienderen PH, Jansen J, McHale LK, Michelmore RW, Visser RGF, van de Wiel CCM (2012) Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations. doi 10.1186/1471-2229-12-43. BMC Plant Biol 12

  81. Velkov VV, Medvinsky AB, Sokolov MS, Marchenko AI (2005) Will transgenic plants adversely affect the environment? J Biosci 30:515–548

    Article  CAS  PubMed  Google Scholar 

  82. Warwick SI, Beckie HJ, Hall LM (2009): Gene flow, invasiveness, and ecological impact of genetically modified crops. In: Schlichting CD, Mousseau TA (eds), Year in evolutionary biology 2009. Annals of the New York Academy of Sciences, pp 72–99

    Google Scholar 

  83. Woodward A, Smith KR, Campbell-Lendrum D, Chadee DD, Honda Y, Liu Q, Olwoch J, Revich B, Sauerborn R, Chafe Z (2014) Climate change and health: on the latest IPCC report. The Lancet 383:1185–1189

    Article  Google Scholar 

  84. Xiao B, Chen X, Xiang C, Tang N, Zhang Q, Xiong L (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    Article  CAS  PubMed  Google Scholar 

  85. Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q, Li S, Xiang C (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162:1378–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang X, Lu G, Long W, Zou X, Li F, Nishio T (2014) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64:60–73

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanjuan Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liang, C. (2016). Genetically Modified Crops with Drought Tolerance: Achievements, Challenges, and Perspectives. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-32423-4_19

Download citation

Publish with us

Policies and ethics