Skip to main content

Understanding How Plants Respond to Drought Stress at the Molecular and Whole Plant Levels

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 2

Abstract

Depending on duration and severity, drought stress causes many morphological, physiological, biochemical, and molecular changes in plants. At the morphological level, drought in general, reduces leaf expansion and growth and results in smaller plant size, lower leaf area index, and lower plant biomass and yield. The consequence of the drought stress on the reduction of grain yield depends on the growth stage at which the stress occurs. Drought stress is more sensitive when stress occurs during the reproductive growth stage, especially prior to or at the flowering stage. Stomatal closure, osmotic adjustment (OA), redox regulation through scavenging of reactive oxygen species (ROS), and synthesis of inducible proteins (dehydrins) are processes that help plants to tolerate drought stress. These processes are mediated in plants via signaling pathways and their crosstalk which culminates in the expression of drought-responsive genes. Several signaling pathways that operate under drought in plants include ABA, strigolactone, lipid-derived signal, ROS, soluble sugars, and others. These signaling pathways are primarily ABA-dependent or ABA-independent. Major transcription factors such as ABREB/ABF, DREB1/CBF, DREB2, NAC, and so on play important roles in the regulatory network of the induction of drought-related genes, the products of which are either functional proteins such as antioxidant enzymes and dehydrins, or regulatory proteins such as transcription factors. Several efforts are being made in recent times where some of these important genes involved in plant response to drought are transferred through a genetic engineering approach to produce transgenic plants. Overexpression of some of these essential drought-responsive genes in the transgenic plants enhanced their tolerance to drought stress, mainly under controlled conditions. However, more comprehensive work needs to be directed toward testing these transgenic plants under natural growing conditions in the field. Even though a single-gene transfer enhanced drought tolerance (DT), multigene transfer might have a greater improvement in DT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Photosynthetic rate

ABA:

Abscisic acid

ABFs:

ABRE- binding factors

ABRE:

ABA-responsive element

ACC:

1-aminocyclopropane-1-carboxylic acid

AP2:

APETALA 2

APX:

Ascorbate peroxidase

AREB:

ABRE-binding protein

AsA:

Reduced ascorbate

ASH:

Ascorbic acid

bZIP:

Two basic leucine zipper transcription factors

CAT:

Catalase

CBF:

CRT binding factor

CRT:

C-repeat

DA:

Drought avoidance

DAG-PP:

Diacylglycerol-pyrophosphate

DE:

Drought escape

Dehydrin:

Dehydration-induced

DHAR:

Dehydroascorbate reductase

DRE:

Dehydration-responsive element

DREB:

DRE-binding protein

DT:

Drought tolerance

E:

Transpiration rate

ERF:

Ethylene-responsive element binding factor

ETC:

Electron transport chain

EUW:

Effective use of water

GOPX:

Guaicol peroxidase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GST:

Glutathione-S- transferase

H2O2 :

Hydrogen peroxide

HI:

Harvest index

LEA:

Late embryogenesis proteins

LOX1:

Lipoxygenase 1

LWP:

Leaf water potential

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde

MDAR:

Monodehydroascorbate reductase

MDHAR:

Monodehydroascorbate reductase

NAC:

NAM, ATAF, CUC

NACR:

NAC recognition sequence

NO:

Nitric oxide

O ·−2 :

Superoxide anion

1O2 :

Singlet oxygen

OA:

Osmotic adjustment

.OH:

Hydroxyl radicals

P5CS:

Delta (1)-pyrroline-5-carboxylate synthetase

PA:

Phosphatidic acid

PCK:

Phosphoenolpyruvate carboxylase

PEG:

Polyethylene glycol

PLD:

Phospholipase D

POD:

Peroxidase

PP2C:

2C-type protein phosphatase

PPDK:

Pyruvate orthophosphate dikinase

PSI:

Photosystem I

PSII:

Photosystem II

PYL:

Pyrabactin-resistance like

PYR:

Pyrabactin resistance

QTL:

Quantitative trait locus

RAB:

Response to ABA

RCAB:

Regulatory component of ABA receptor

ROS:

Reactive oxygen species

Rubisco:

Ribulose 1,5 bisphosphate carboxylase/oxygenase

RuBP:

Ribulose 1,5 bisphosphate

SnRK2:

Sucrose non-fermenting 1-related protein kinase

SOD:

Superoxide dismutase

WUE:

Water use efficiency

References

  1. Abbate PE, Dardanelli JL, Cantarero MG, Maturano M, Melchiori RJM, Suero EE (2004) Climatic and water availability effects on water-use efficiency in wheat. Crop Sci 44:474–483

    Article  Google Scholar 

  2. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abogadallah GM (2011) Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. Plant Sci 180:540–547

    Article  CAS  PubMed  Google Scholar 

  4. Abogadallah GM, Nada RM, Malinowski R, Quick P (2011) Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta 233:1265–1276

    Article  CAS  PubMed  Google Scholar 

  5. Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Genet Genomics 277:189–198

    Article  CAS  PubMed  Google Scholar 

  6. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  7. Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54:102–123

    Article  CAS  PubMed  Google Scholar 

  8. Agusti J, Gimeno J, Merelo P, Serrano R, Cercos M, Conesa A, Talon M, Tadeo FR (2012) Early gene expression events in the laminar abscission zone of abscission-promoted citrus leaves after a cycle of water stress/rehydration: involvement of CitbHLH1. J Exp Bot 63:6079–6091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aharoni N (1978) Relationship between leaf water status and endogenous ethylene in detached leaves. Plant Physiol 61:658–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ajithkumar IP, Panneerselvam R (2014) ROS scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense roth. under drought stress. Cell Biochem Biophys 68:587–595

    Article  CAS  PubMed  Google Scholar 

  11. Al-Mefleh NK, Samarah N, Zaitoun S, Al-Ghzawi AA-M (2012) Effect of irrigation levels on fruit characteristics, total fruit yield and water use efficiency of melon under drip irrigation system. J Food Agric Environ 10:540–545

    Google Scholar 

  12. Albacete A, Cantero-Navarro E, Grosskinsky DK, Arias CL, Balibrea ME, Bru R, Fragner L, Ghanem ME, Gonzalez Mde L, Hernandez JA, Martinez-Andujar C, van der Graaff E, Weckwerth W, Zellnig G, Perez-Alfocea F, Roitsch T (2015) Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. J Exp Bot 66:863–878

    Article  CAS  PubMed  Google Scholar 

  13. Albacete AA, Martinez-Andujar C, Perez-Alfocea F (2014) Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol Adv 32:12–30

    Article  CAS  PubMed  Google Scholar 

  14. Alqudah AM, Samarah NH, Mullen RE (2011) Drought stress effect on crop pollination, seed set, yield and quality. In: Alternative farming systems, biotechnology, drought stress and ecological fertilisation. Springer, Berlin, pp 193–213

    Google Scholar 

  15. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  16. Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940 (Spec No)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Artlip TS, Callahan AM, Bassett CL, Wisniewski ME (1997) Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus persica [L.] Batsch). Plant Mol Biol 33:61–70

    Article  CAS  PubMed  Google Scholar 

  18. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  19. Atwell BJ, Kriedemann PE, Turnbull CGN (eds) (1999) Plant in action, adaptation in nature, performance in cultivation. Macmillan Education Australia Melbourne, Australia

    Google Scholar 

  20. Bacelar EVA, Moutinho-Pereira J, Gonçalves BC, Brito CQ, Gomes-Laranjo J, Ferreira HF, Correia C (2012) Water use strategies of plants under drought conditions. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin Heidelberg, pp 145–170

    Chapter  Google Scholar 

  21. Badawi HG, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Article  CAS  Google Scholar 

  22. Baier M, Kandlbinder A, Golldack D, Dietz K-J (2005) Oxidative stress and ozone: perception, signalling and response. Plant, Cell Environ 28:1012–1020

    Article  CAS  Google Scholar 

  23. Baker EH, Bradford KJ, Bryant JA, Rost TL (1995) A comparison of desiccation-related proteins (dehydrin and QP47) in peas (Pisum sativum). Seed Sci Res 5:185–193

    Article  CAS  Google Scholar 

  24. Baloglu MC, Inal B, Kavas M, Unver T (2014) Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species. Gene 550:117–122

    Article  CAS  PubMed  Google Scholar 

  25. Bargmann BO, Laxalt AM, ter Riet B, van Schooten B, Merquiol E, Testerink C, Haring MA, Bartels D, Munnik T (2009) Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol 50:78–89

    Article  CAS  PubMed  Google Scholar 

  26. Barratt DH, Clark JA (1991) Proteins arising during the late stages of embryogenesis in Pisum sativum L. Planta 184:14–23

    Article  CAS  PubMed  Google Scholar 

  27. Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    Article  CAS  PubMed  Google Scholar 

  28. Benesova M, Hola D, Fischer L, Jedelsky PL, Hnilicka F, Wilhelmova N, Rothova O, Kocova M, Prochazkova D, Honnerova J, Fridrichova L, Hnilickova H (2012) The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS ONE 7:e38017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bensen RJ, Boyer JS, Mullet JE (1988) Water deficit-induced changes in abscisic acid, growth, polysomes, and translatable rna in soybean hypocotyls. Plant Physiol 88:289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berger JD, Ludwig C (2014) Contrasting adaptive strategies to terminal drought-stress gradients in Mediterranean legumes: phenology, productivity, and water relations in wild and domesticated Lupinus luteus L. J Exp Bot 65:6219–6229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007) A Large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–516

    Article  Google Scholar 

  32. Bittman S, Simpson GM (1989) Drought effects on water relations of three cultivated grasses. Crop Sci 29:992–999

    Article  Google Scholar 

  33. Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112:119–123

    Article  Google Scholar 

  34. Boonjung H, Fukai S (1996) Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 2. Phenology, biomass production and yield. Field Crops Res 48:47–55

    Article  Google Scholar 

  35. Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boss WF, Lynch DV, Wang X (2008) Lipid-Mediated Signaling. In: Yang Z (ed) Annual plant reviews, volume 33: intracellular signaling in plants. Oxford, UK, Wiley-Blackwell, pp 202–243

    Chapter  Google Scholar 

  37. Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased rubisco activity and rubp content under progressive water stress? New Phytol 162:671–681

    Article  CAS  Google Scholar 

  38. Bradford KJ, Chandler PM (1992) Expression of “dehydrin-like” proteins in embryos and seedlings of Zizania palustris and Oryza sativa during dehydration. Plant Physiol 99:488–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds). Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  41. Bray EA, Moses MS, Chung E, Imai R (1996) The role of abscisic acid in the regulation of gene expression during drought stress. In: Grillo S, Leone A (eds) Physical stresses in plants: genes and their products for tolerance. Springer, Berlin, pp 131–139

    Chapter  Google Scholar 

  42. Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  CAS  PubMed  Google Scholar 

  43. Buckley TN, Mott KA (2002) Stomatal water relations and the control of hydraulic supply and demand. In: Esser K, Lüttge U, Beyschlag W, Hellwig F (eds) Progress in botany, vol 63. Springer, Berlin, pp 309–325

    Chapter  Google Scholar 

  44. Canci H, Toker C (2009) Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J Agron Crop Sci 195:47–54

    Article  Google Scholar 

  45. Carpenter JF, Crowe JH (1988) The mechanism of cryoprotection of proteins by solutes. Cryobiology 25:244–255

    Article  CAS  PubMed  Google Scholar 

  46. Carter TEJ, Rufty TW (1993) Soybean plant introductions exhibiting drought and aluminum tolerance. In: Kuo CG (ed) Adaptation of food crops to temperature and water stress: international symposium proceedings. Asian Vegetable Research and Development Center, Taipei, Taiwan, pp 335–346

    Google Scholar 

  47. Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  48. Ceccardi TL, Meyer NC, Close TJ (1994) Purification of a maize dehydrin. Protein Expr Purif 5:266–269

    Article  CAS  PubMed  Google Scholar 

  49. Chan Z, Shi H (2015) Improved abiotic stress tolerance of bermudagrass by exogenous small molecules. Plant Sig Behav 10:e991577

    Article  CAS  Google Scholar 

  50. Chandler PM, Robertson M (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Ann Rev Plant Physiol Plant Mol Biol 45:113–141

    Article  CAS  Google Scholar 

  51. Charfeddine S, Saidi MN, Charfeddine M, Gargouri-Bouzid R (2015) Genome-wide identification and expression profiling of the late embryogenesis abundant genes in potato with emphasis on dehydrins. Mol Biol Rep 42:1163–1174

    Article  CAS  PubMed  Google Scholar 

  52. Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16

    Article  CAS  Google Scholar 

  53. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  54. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  55. Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  56. Chen H, Jiang J-G (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18:309–319

    Article  CAS  Google Scholar 

  57. Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  CAS  Google Scholar 

  58. Christov NK, Yoneyama S, Shimamoto Y, Imai R (2007) Differential expression of wheat genes during cold acclimation. Tsitol Genet 41:13–22

    CAS  PubMed  Google Scholar 

  59. Clark LJ, Gowing DJG, Lark RM, Leeds-Harrison PB, Miller AJ, Wells DM, Whalley WR, Whitmore AP (2005) Sensing the physical and nutritional status of the root environment in the field: a review of progress and opportunities. J Agri Sci 143:347–358

    Article  Google Scholar 

  60. Clifford SC, Arndt SK, Corlett JE, Joshi S, Sankhla N, Popp M, Jones HG (1998) The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritiana (Lamk.). J Exp Bot 49:967–977

    Article  CAS  Google Scholar 

  61. Close T, Chandler P (1990) Cereal dehydrins: serology, gene mapping and potential functional roles. Funct Plant Biol 17:333–344

    CAS  Google Scholar 

  62. Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  63. Close TJ, Kortt AA, Chandler PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13:95–108

    Article  CAS  PubMed  Google Scholar 

  64. Close TJ, Lammers PJ (1993) An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins. Plant Physiol 101:773–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Close TJ, Meyer NC, Radik J (1995) Nucleotide sequence of a gene encoding a 58.5-kilodalton barley dehydrin that lacks a serine tract. Plant Physiol 107:289–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker N (ed) Photosynthesis and the environment, vol 5. Springer, Netherlands, pp 347–366

    Chapter  Google Scholar 

  67. Cortes PM, Sinclair TR (1986) Gas exchange of field-grown soybean under drought. Agron J 78:454–458

    Article  Google Scholar 

  68. Cortes PM, Sinclair TR (1986) Water relations of field-grown soybean under drought. Crop Sci 26:993–998

    Article  Google Scholar 

  69. Costa LD, Vedove GD, Gianquinto G, Giovanardi R, Peressotti A (1997) Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. Potato Res 40:19–34

    Article  Google Scholar 

  70. Cox WJ, Jolliff GD (1987) Crop-water relations of sunflower and soybean under irrigated and dryland conditions. Crop Sci 27:553–557

    Article  Google Scholar 

  71. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Ann Rev Plant Biol 61:651–679

    Article  CAS  Google Scholar 

  72. Davies MJ, Mansfield T (1983) The role of abscisic acid in drought avoidance. In: Addicott FT (ed) Abscisic acid. Praeger, New York, pp 237–268

    Google Scholar 

  73. Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Ann Rev Plant Physiol Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  74. de Ronde JA, Laurie RN, Caetano T, Greyling MM, Kerepesi I (2004) Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica 138:123–132

    Article  Google Scholar 

  75. Demmig-Adams B, Adams WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  76. Desclaux D, Huynh T-T, Roumet P (2000) Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Sci 40:716–722

    Article  Google Scholar 

  77. Desclaux D, Roumet P (1996) Impact of drought stress on the phenology of two soybean (Glycine max L. Merr) cultivars. Field Crops Res 46:61–70

    Article  Google Scholar 

  78. Dodd I (2005) Root-to-shoot signalling: assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta. Plant Soil 274:251–270

    Article  CAS  Google Scholar 

  79. Du S-Y, Zhang X-F, Lu Z, Xin Q, Wu Z, Jiang T, Lu Y, Wang X-F, Zhang D-P (2012) Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant Mol Biol 80:519–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  81. Dubrovsky JG, Gómez-Lomelí LF (2003) Water deficit accelerates determinate developmental program of the primary root and does not affect lateral root initiation in a Sonoran Desert cactus (Pachycereus pringlei, Cactaceae). Am J Bot 90:823–831

    Article  CAS  PubMed  Google Scholar 

  82. Dure L (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    Article  CAS  PubMed  Google Scholar 

  83. Dure L III, Crouch M, Harada J, Ho T-H, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486

    Article  CAS  PubMed  Google Scholar 

  84. Dure LI (1993) Structural motifs in LEA proteins. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress. American Society of Plant Physiologists, Rockville, pp 91–103

    Google Scholar 

  85. Eini O, Yang N, Pyvovarenko T, Pillman K, Bazanova N, Tikhomirov N, Eliby S, Shirley N, Sivasankar S, Tingey S, Langridge P, Hrmova M, Lopato S (2013) Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat. PLoS ONE 8:e58713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  CAS  PubMed  Google Scholar 

  87. Engels C, Fuganti-Pagliarini R, Marin SR, Marcelino-Guimaraes FC, Oliveira MC, Kanamori N, Mizoi J, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL (2013) Introduction of the rd29A: AtDREB2A CA gene into soybean (Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration. Genet Mol Biol 36:556–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Espelund M, De Bedout JA, Jr Outlaw WH, Jakobsen KS (1995) Environmental and hormonal regulation of barley late-embryogenesis-abundant (Lea) mRNAs is via different signal transduction pathways. Plant Cell Environ 18:943–949

    Article  CAS  Google Scholar 

  89. Espelund M, Saeboe-Larssen S, Hughes DW, Galau GA, Larsen F, Jakobsen KS (1992) Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J 2:241–252

    CAS  PubMed  Google Scholar 

  90. Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  91. Farooq M, Kobayashi N, Ito O, Wahid A, Serraj R (2010) Broader leaves result in better performance of indica rice under drought stress. J Plant Physiol 167:1066–1075

    Article  CAS  PubMed  Google Scholar 

  92. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  93. Farooq M, Wahid A, Lee D, Ito O, Siddique KHM (2009) Advances in drought resistance of rice. Crit Rev Plant Sci 28:199–217

    Article  CAS  Google Scholar 

  94. Findlater EE, Graether SP (2009) NMR assignments of the intrinsically disordered K2 and YSK2 dehydrins. Biomol NMR Assign 3:273–275

    Article  CAS  PubMed  Google Scholar 

  95. Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C(3) plants. Plant Biol (Stuttg) 6:269–279

    Article  CAS  Google Scholar 

  96. Flexas J, Diaz-Espejo A, GalmÉS J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    Article  CAS  PubMed  Google Scholar 

  97. Flexas J, Ribas-Carbo M, Bota J, Galmes J, Henkle M, Martinez-Canellas S, Medrano H (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82

    Article  CAS  PubMed  Google Scholar 

  98. Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmes J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  CAS  PubMed  Google Scholar 

  99. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  100. Franks SJ (2011) Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol 190:249–257

    Article  PubMed  Google Scholar 

  101. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  102. Galmés J, Flexas J, Savé R, Medrano H (2007) Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant Soil 290:139–155

    Article  CAS  Google Scholar 

  103. Genty B, Meyer S, Piel C, Badeck F, Liozon R (1998) CO2 diffusion inside leaf mesophyll of ligneous plants. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer Academic Publishers, Dordrecht, pp 3961–3967

    Google Scholar 

  104. Gerik TJ, Faver KL, Thaxton PM, El-Zik KM (1996) Late season water stress in cotton: I. Plant growth, water use, and yield. Crop Sci 36:914–921

    Article  Google Scholar 

  105. Ghotbi-Ravandi AA, Shahbazi M, Shariati M, Mulo P (2014) Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. J Agron Crop Sci 200:403–415

    Article  CAS  Google Scholar 

  106. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  107. Giordani T, Natali L, D’Ercole A, Pugliesi C, Fambrini M, Vernieri P, Vitagliano C, Cavallini A (1999) Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.). Plant Mol Biol 39:739–748

    Article  CAS  PubMed  Google Scholar 

  108. Goday A, Jensen AB, Culiáñez-Macià FA, Mar Albà M, Figueras M, Serratosa J, Torrent M, Pagès M (1994) The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Godoy JA, Luna R, de Mar Parra M, del Pozo O, Pintor-Toro JA (1996) In search for a function for dehydrin TAS14. In: Grillo S, Leone A (eds) Physical stresses in plants: genes and their products for tolerance. Springer, Berlin, pp 85–94

    Chapter  Google Scholar 

  110. Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26:1921–1934

    Article  CAS  PubMed  Google Scholar 

  111. Godoy JA, Pardo JM, Pintor-Toro JA (1990) A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Mol Biol 15:695–705

    Article  CAS  PubMed  Google Scholar 

  112. Goldman IL, Carter TE, Patterson RP (1989) Differential genotypic response to drought stress and subsoil aluminum in soybean. Crop Sci 29:330–334

    Article  Google Scholar 

  113. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gowing DJG, Davies WJ, Jones HG (1990) A positive root-sourced signal as an indicator of soil drying in apple, Malus x domestica Borkh. J Exp Bot 41:1535–1540

    Article  Google Scholar 

  115. Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5:576

    Article  PubMed  PubMed Central  Google Scholar 

  116. Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849

    Article  CAS  Google Scholar 

  117. Gu J-F, Qiu M, Yang J-C (2013) Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes. Crop J 1:105–114

    Article  Google Scholar 

  118. Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA 111:851–856

    Article  PubMed  CAS  Google Scholar 

  119. Han B, Hughes DW, Galau GA, Bewley JD, Kermode AR (1997) Changes in late-embryogenesis-abundant (LEA) messenger RNAs and dehydrins during maturation and premature drying of Ricinus communis L. seeds. Planta 201:27–35

    Article  CAS  PubMed  Google Scholar 

  120. Harb A, Awad D, Samarah N (2015) Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. J Plant Interact 10:109–116

    Article  CAS  Google Scholar 

  121. Harb AM, Samarah NH (2015) Physiological and molecular responses to controlled severe drought in two barley (Hordeum Vulgare L.) genotypes. J Crop Improv 29:82–94

    Article  CAS  Google Scholar 

  122. Hasanuzzaman M, Nahar K, Gill SS, Fujita M (2013) Drought stress responses in plants, oxidative stress, and antioxidant defense. In: Climate change and plant abiotic stress tolerance. Wiley-VCH Verlag GmbH & Co. KGaA, pp 209–250

    Google Scholar 

  123. Hassan NM, El-Bastawisy ZM, El-Sayed AK, Ebeed HT, Nemat Alla MM (2015) Roles of dehydrin genes in wheat tolerance to drought stress. J Adv Res 6:179–188

    Article  CAS  PubMed  Google Scholar 

  124. Haupt-Herting S, Fock HP (2002) Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Ann Bot 89:851–859 (Spec No)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hey SJ, Byrne E, Halford NG (2010) The interface between metabolic and stress signalling. Ann Bot 105:197–203

    Article  CAS  PubMed  Google Scholar 

  126. Hong Y, Zhang W, Wang X (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ 33:627–635

    Article  CAS  PubMed  Google Scholar 

  127. Hu M, Wiatrak P (2012) Effect of planting date on soybean growth, yield, and grain quality: Review. Agron J 104:785–790

    Article  Google Scholar 

  128. Hudak CM, Patterson RP (1995) Vegetative growth analysis of a drought-resistant soybean plant introduction. Crop Sci 35:464–471

    Article  Google Scholar 

  129. Hussain M, Malik MA, Farooq M, Khan MB, Akram M, Saleem MF (2009) Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. J Agron Crop Sci 195:98–109

    Article  CAS  Google Scholar 

  130. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  131. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  132. Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  CAS  PubMed  Google Scholar 

  133. Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 14:607–612

    Article  Google Scholar 

  134. Jongdee B, Fukai S, Cooper M (2002) Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res 76:153–163

    Article  Google Scholar 

  135. Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162

    Article  CAS  PubMed  Google Scholar 

  137. Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego

    Google Scholar 

  138. Ku Y-S, Au-Yeung W-K, Yung Y-L, Li M-W, Wen C-Q, Liu X, Lam H-M (2013) Drought stress and tolerance in soybean. In: Board JE (ed) A comprehensive survey of international soybean research—genetics, physiology, agronomy and nitrogen relationships. New York, InTech, pp 209–237

    Google Scholar 

  139. Kumar M, Lee S-C, Kim J-Y, Kim S-J, Aye S, Kim S-R (2014) Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J Plant Biol 57:383–393

    Article  CAS  Google Scholar 

  140. Lawlor DW (2002) Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Ann Bot 89:871–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  142. Lazaridou M, Kirilov A, Noitsakis B, Todorov N, Katerov I (2003) The effect of water deficit on yield and water use efficiency of lucerne. Optimal forage systems for animal production and the environment. In: Proceedings of the 12th symposium of the European grassland federation. Pleven, Bulgaria

    Google Scholar 

  143. Lazaridou M, Koutroubas SD (2004) Drought effect on water use efficiency of berseem clover at various growth stages. In: Fischer T, Turner N, Angus J, McIntyre L, Robertson M, Andrew Borrell A, Lloyd D (eds). New directions for a diverse planet: proceedings of the 4th international crop science congress Brisbane. Australia

    Google Scholar 

  144. Leprince O, van der Werf A, Deltour R, Lambers H (1992) Respiratory pathways in germinating maize radicles correlated with desiccation tolerance and soluble sugars. Physiol Plant 85:581–588

    Article  CAS  Google Scholar 

  145. Ligterink W, Hirt H (2001) Mitogen-activated protein (MAP) kinase pathways in plants: versatile signaling tools. Int Rev Cytol 201:209–275

    Article  CAS  PubMed  Google Scholar 

  146. Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27, pp 463

    Google Scholar 

  147. Liu H, Wang X, Wang D, Zou Z, Liang Z (2011) Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crops Prod 33:84–88

    Article  CAS  Google Scholar 

  148. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu S, Wang X, Wang H, Xin H, Yang X, Yan J, Li J, Tran L-SP, Shinozaki K, Yamaguchi-Shinozaki K, Qin F (2013) Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet 9:e1003790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Loreto F, Tricoli D, Marco G (1995) On the relationship between electron transport rate and photosynthesis in leaves of the C4 plant sorghum bicolor exposed to water stress, temperature changes and carbon metabolism inhibition. Funct Plant Biol 22:885–892

    CAS  Google Scholar 

  151. Lu S, Bahn SC, Qu G, Qin H, Hong Y, Xu Q, Zhou Y, Hong Y, Wang X (2013) Increased expression of phospholipase Dalpha1 in guard cells decreases water loss with improved seed production under drought in Brassica napus. Plant Biotechnol J 11:380–389

    Article  CAS  PubMed  Google Scholar 

  152. Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  153. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  154. Mansfield JT, Atkinson CJ (1990) Stomatal behaviour in water stressed plants. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wily-Liss, New York, pp 241–264

    Google Scholar 

  155. Maroco JP, Rodrigues ML, Lopes C, Chaves MM (2002) Limitations to leaf photosynthesis in field-grown grapevine under drought; metabolic and modelling approaches. Funct Plant Biol 29:451–459

    Google Scholar 

  156. Maroco JP, Pereira JS, Chaves MM (1997) Stomatal responses to leaf-to-air vapour pressure deficit in Sahelian species. Funct Plant Biol 24:381–387

    Google Scholar 

  157. Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19:37–49

    Article  CAS  PubMed  Google Scholar 

  158. Matysik J, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  159. Meyer S, Genty B (1998) Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance of Ci estimated from leaf gas exchange. Plant Physiol 116:947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Meyer S, Genty B (1999) Heterogeneous inhibition of photosynthesis over the leaf surface of Rosa rubiginosa L. during water stress and abscisic acid treatment: induction of a metabolic component by limitation of CO(2) diffusion. Planta 210:126–131

    Article  CAS  PubMed  Google Scholar 

  161. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  162. Molinari HBC, Marur CJ, Daros E, De Campos MKF, De Carvalho JFRP, Filho JCB, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229

    Article  CAS  Google Scholar 

  163. Morgan PW (1990) Effects of abiotic stresses on plant hormone systems. Plant Biol 12:113–146

    Google Scholar 

  164. Moustafa MA, Boersma L, Kronstad WE (1996) Response of four spring wheat cultivars to drought stress. Crop Sci 36:982–986

    Article  Google Scholar 

  165. Muchow RC, Sinclair TR, Bennett JM, Hammond LC (1986) Response of leaf growth, leaf nitrogen, and stomatal conductance to water deficits during vegetative growth of field-grown soybean. Crop Sci 26:1190–1195

    Article  CAS  Google Scholar 

  166. Mundy J, Chua NH (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7:2279–2286

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Munnik T, Testerink C (2009) Plant phospholipid signaling: “in a nutshell”. J Lipid Res 50:S260–S265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103

    Article  CAS  PubMed  Google Scholar 

  169. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  170. Nardini A, Tyree MT, Salleo S (2001) Xylem cavitation in the leaf of prunus laurocerasus and its impact on leaf hydraulics. Plant Physiol 125:1700–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Neven LG, Haskell DW, Hofig A, Li QB, Guy CL (1993) Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol 21:291–305

    Article  CAS  PubMed  Google Scholar 

  172. Nguyen GN, Sutton BG (2009) Water deficit reduced fertility of young microspores resulting in a decline of viable mature pollen and grain set in rice. J Agron Crop Sci 195:11–18

    Article  Google Scholar 

  173. Nielsen DC, Nelson NO (1998) Black bean sensitivity to water stress at various growth stages. Crop Sci 38:422–427

    Article  Google Scholar 

  174. Nissanka SP, Dixon MA, Tollenaar M (1997) Canopy gas exchange response to moisture stress in old and new maize hybrid. Crop Sci 37:172–181

    Article  CAS  Google Scholar 

  175. Nooden LD (1988) The phenomena of senescence and aging. In: Nooden LD, Leopald AC (eds) Senescence and aging in plants. Academic, USA, pp 1–150

    Chapter  Google Scholar 

  176. Oh S-J, Kim YS, Kwon C-W, Park HK, Jeong JS, Kim J-K (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150:1368–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo SU, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K (2013) Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25:609–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  179. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49

    Article  PubMed  Google Scholar 

  180. Ouellet F, Houde M, Sarhan F (1993) Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat. Plant Cell Physiol 34:59–65

    CAS  PubMed  Google Scholar 

  181. Ouvrard O, Cellier F, Ferrare K, Tousch D, Lamaze T, Dupuis JM, Casse-Delbart F (1996) Identification and expression of water stress- and abscisic acid-regulated genes in a drought-tolerant sunflower genotype. Plant Mol Biol 31:819–829

    Article  CAS  PubMed  Google Scholar 

  182. Pandey RK, Herrera WAT, Villegas AN, Pendleton JW (1984) Drought response of grain legumes under irrigation gradient: III. Plant growth. Agron J 76:557–560

    Article  Google Scholar 

  183. Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    Article  CAS  PubMed  Google Scholar 

  184. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Park SY, Peterson FC, Mosquna A, Yao J, Volkman BF, Cutler SR (2015) Agrochemical control of plant water use using engineered abscisic acid receptors. Nature 520:545–548

    Article  PubMed  CAS  Google Scholar 

  186. Parry MA, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Praba ML, Cairns JE, Babu RC, Lafitte HR (2009) Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci 195:30–46

    Article  Google Scholar 

  188. Quisenberry JE, Roark B (1976) Influence of indeterminate growth habit on yield and irrigation water-use efficiency in upland cotton. Crop Sci 16:762–765

    Article  Google Scholar 

  189. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  191. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  192. Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize: quantitative variation and polypeptide identification. Plant Physiol 117:1253–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Roberton M, Chandler P (1992) Pea dehydrins: identification, characterisation and expression. Plant Mol Biol 19:1031–1044

    Article  CAS  PubMed  Google Scholar 

  194. Robertson M, Chandler PM (1994) A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Mol Biol 26:805–816

    Article  CAS  PubMed  Google Scholar 

  195. Roohi E, Tahmasebi Sarvestani Z, Modarres-Sanavy SAM, Siosemardeh A (2013) Comparative study on the effect of soil water stress on photosynthetic function of triticale, bread wheat, and barley. J Agri Sci Technol 15:215–225

    Google Scholar 

  196. Rosales-Serna R, Kohashi-Shibata J, Acosta-Gallegos JA, Trejo-López C, Ortiz-Cereceres JN, Kelly JD (2004) Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars. Field Crops Res 85:203–211

    Article  Google Scholar 

  197. Ruelland E, Kravets V, Derevyanchuk M, Martinec J, Zachowski A, Pokotylo I (2015) Role of phospholipid signalling in plant environmental responses. Environ Exp Bot 114:129–143

    Article  CAS  Google Scholar 

  198. Saini HS, Westgate ME (1999) Reproductive development in grain crops during drought. In: Donald LS (ed) Advances in agronomy, vol 68. Academic Press, pp 59–96

    Google Scholar 

  199. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  CAS  PubMed  Google Scholar 

  200. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci 103:18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Samarah N, Alqudah A (2011) Effects of late-terminal drought stress on seed germination and vigor of barley (Hordeum vulgare L.). Arch Agron Soil Sci 57:27–32

    Article  Google Scholar 

  202. Samarah N, Alqudah A, Amayreh J, McAndrews G (2009) The effect of late-terminal drought stress on yield components of four barley cultivars. J Agron Crop Sci 195:427–441

    Article  Google Scholar 

  203. Samarah N, Mullen R (2006) Total soluble and dehydrin-like proteins in full-rounded and shriveled seeds of soybean in response to drought stress. J Food Agric Environ 4:260

    Google Scholar 

  204. Samarah N, Mullen R, Cianzio S (2004) Size distribution and mineral nutrients of soybean seeds in response to drought stress. J Plant Nutr 27:815–835

    Article  CAS  Google Scholar 

  205. Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149

    Article  Google Scholar 

  206. Samarah NH, Haddad N, Alqudah AM (2009) Yield potential evaluation in chickpea genotypes under late terminal drought in relation to the length of reproductive stage. Ital J Agron 4:111–117

    Article  Google Scholar 

  207. Samarah NH, Mullen RE, Cianzio SR, Scott P (2006) Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling. Crop Sci 46:2141

    Article  CAS  Google Scholar 

  208. Sanders G, Arndt S (2012) Osmotic adjustment under drought conditions. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 199–229

    Chapter  Google Scholar 

  209. Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    Article  CAS  PubMed  Google Scholar 

  210. Sherrard ME, Maherali H (2006) The adaptive significance of drought escape in Avena barbata, an annual grass. Evolution 60:2478–2489

    Article  CAS  PubMed  Google Scholar 

  211. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  212. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  213. Siddique MRB, Hamid A, Islam MS (2001) Drought stress effects on water relations of wheat. Bot Bull Acad Sinica 41:35–39

    Google Scholar 

  214. Signarbieux C, Feller U (2011) Non-stomatal limitations of photosynthesis in grassland species under artificial drought in the field. Environ Exp Bot 71:192–197

    Article  CAS  Google Scholar 

  215. Simon-Sarkadi L, Kocsy G, Várhegyi Á, Galiba G, De Ronde JA (2006) Stress-induced changes in the free amino acid composition in transgenic soybean plants having increased proline content. Biol Plant 50:793–796

    Article  CAS  Google Scholar 

  216. Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  CAS  PubMed  Google Scholar 

  217. Sloane RJ, Patterson RP, Carter TE (1990) Field drought tolerance of a soybean plant introduction. Crop Sci 30:118–123

    Article  Google Scholar 

  218. Speirs J, Binney A, Collins M, Edwards E, Loveys B (2013) Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). J Exp Bot 64:1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Stoll M, Loveys B, Dry P (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot 51:1627–1634

    Article  CAS  PubMed  Google Scholar 

  220. Taiz L, Zeiger E (2010) Plant physiology. Sinauer Associates

    Google Scholar 

  221. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  PubMed  Google Scholar 

  222. Takahashi R, Joshee N, Kitagawa Y (1994) Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Mol Biol 26:339–352

    Article  CAS  PubMed  Google Scholar 

  223. Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173–183

    Article  CAS  PubMed  Google Scholar 

  224. Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    Article  CAS  Google Scholar 

  225. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Molinari HB, Marur CJ, Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  CAS  PubMed  Google Scholar 

  227. Vilardell J, Goday A, Freire MA, Torrent M, Martinez MC, Torne JM, Pages M (1990) Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize. Plant Mol Biol 14:423–432

    Article  CAS  PubMed  Google Scholar 

  228. Villalobos-Rodriquez E, Shibles R (1985) Response of determinate and indeterminate tropical soybean cultivars to water stress. Field Crops Res 10:269–281

    Article  Google Scholar 

  229. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  230. Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    Article  CAS  PubMed  Google Scholar 

  231. Xiong L (2007) Abscisic acid in plant response and adaptation to drought and salt stress. In: Jenks M, Hasegawa P, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Netherlands, pp 193–221

    Chapter  Google Scholar 

  232. Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  CAS  PubMed  Google Scholar 

  233. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  234. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  235. Yan J, Wang J, Tissue D, Holaday AS, Allen R, Zhang H (2003) Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpress an ascorbate peroxidase gene. Crop Sci 43:1477–1483

    Article  CAS  Google Scholar 

  236. Yordanov I, Velikova V, Tsonev T (2003) Plant responses to drought and stress tolerance. Bulg J Plant Physiol 187–206

    Google Scholar 

  237. Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D, Xing Y, Zhang Q (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1213–1228

    Article  PubMed  PubMed Central  Google Scholar 

  238. Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zheng L, Liu G, Meng X, Liu Y, Ji X, Li Y, Nie X, Wang Y (2013) A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant Mol Biol 82:303–320

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nezar H. Samarah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Samarah, N.H. (2016). Understanding How Plants Respond to Drought Stress at the Molecular and Whole Plant Levels. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-32423-4_1

Download citation

Publish with us

Policies and ethics