Skip to main content

In Support of the Inclusion of Data on Nanomaterials Transformations and Environmental Interactions into Existing Regulatory Frameworks

  • Chapter
  • First Online:
Managing Risk in Nanotechnology

Abstract

Research traditionally outstrips regulation leading to a lag between scientific advances and regulatory frameworks. This is nowhere more apparent than in the arena of nanomaterials (NMs) safety testing. Here, regulatory focus has been on assessing the suitability of existing regulatory regimes and standardised assays for use with NMs. Meanwhile scientific focus has moved towards an acceptance of the fact that as-made or so-called pristine NMs do not exist in real products or the environments as a result of physical, chemical, biological and binding-related transformations which drive the NMs towards lower surface energy states. Thus, in parallel with the move towards alternative test methods, there is a need to support regulatory authorities in understanding the relevant species to test in the case of NMs risk assessment and how to best incorporate such new knowledge into regulation. This chapter appraises some of the steps that could support such a transition, including looking for precedent in contiguous regulatory models for assessing transformed variants (e.g. pesticide metabolites), considering grouping and read-across strategies for likely NMs transformations, and validating standard tests for NMs ageing. Finally, it will consider the legal issues surrounding manufacturer’s responsibility for providing safety data for materials that are no longer the as-produced materials. As there is an essentially infinite array of uses/formulations for NMs, all of which can transform the NM from its original form and composition; where does and should a manufacturer’s responsibilities end?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ec.europa.eu/enterprise/sectors/chemicals/reach/nanomaterials/

  2. 2.

    http://www.hsa.ie/eng/Your_Industry/Chemicals/REACH/

  3. 3.

    NMs will be considered as “phase-in” if they or their base substance are listed on the European Inventory of Existing Commercial Chemical Substances (EINECS) are considered as No-Longer Polymers or have been manufactured in the EU but not placed on the market between 1st of June 1992 and 1st of June 2007.

  4. 4.

    Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions in accordance with Article 117(4) of REACH and Article 46(2) of CLP, and a review of certain elements of REACH in line with Articles 75(2), 138(2), 138(3) and 138(6) of REACH {COM(2013)0049}. Available: http://www.ipex.eu/IPEXL-WEB/dossier/document/COM20130049.do.

  5. 5.

    http://echa.europa.eu/support/grouping-of-substances-and-read-across

Bibliography

  • Albanese, A., Walkey, C. D., Olsen, J. B., Guo, H., Emili, A., & Chan, W. C. (2014). Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano, 8, 5515–5526.

    Article  Google Scholar 

  • Arts, J. H. E., Mackenzie Hadi, M., Irfan, M.-A., Keene, A. M., Kreiling, R., Lyon, D., … Landsiedel, R. (2015). A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regulatory Toxicology and Pharmacology, 71, S1–S27.

    Google Scholar 

  • Auffan, M., Rose, J., Proux, O., Masion, A., Liu, W., Benameur, L., … Bottero, J. Y. (2012). Is there a Trojan-horse effect during magnetic nanoparticles and metalloid cocontamination of human dermal fibroblasts? Environmental Science and Technology, 46, 10789–10796.

    Google Scholar 

  • Azoulay, D. (2012). Nanorisk: Nanomaterials “Just Out of REACH” of EU regulations. The Center for International Environmental Law. Retrieved from http://www.ciel.org/Publications/Nano_Reach_Study_Feb2012.pdf

  • Brunner, D., Frank, J., Appl, H., Schöffl, H., Pfaller, W., & Gstraunthaler, G. (2010). Serum-free cell culture: The serum-free media interactive online database. ALTEX, 27, 53–62.

    Google Scholar 

  • Carlson, R. M. (1990). Assessment of the propensity for covalent binding of electrophiles to biological substrates. Environmental Health Perspectives, 87, 227–232.

    Article  Google Scholar 

  • Cerrillo, C., Barandika, G., Igartua, A., Areitioaurtena, O., & Mendoza, G. (2015). Towards the standardization of nanoecotoxicity testing: Natural organic matter ‘camouflages’ the adverse effects of TiO2 and CeO2 nanoparticles on green microalgae. Science of the Total Environment, 543, 95–104.

    Google Scholar 

  • Chen, S., Goode, A. E., Sweeney, S., Theodorou, I. G., Thorley, A. J., Ruenraroengsak, P., … Porter, A. E. (2013). Sulfidation of silver nanowires inside human alveolar epithelial cells: A potential detoxification mechanism. Nanoscale, 5, 9839–9847.

    Google Scholar 

  • Cramer, G. M., Ford, R. A., & Hall, R. L. (1978). Estimation of toxic hazard—A decision tree approach. Food and Cosmetics Toxicology, 16, 255–276.

    Article  Google Scholar 

  • Dale, A. L., Casman, E. A., Lowry, G. V., Lead, J. R., Viparelli, E., & Baalousha, M. (2015). Modeling nanomaterial environmental fate in aquatic systems. Environmental Science and Technology, 49(5), 2587–2893.

    Article  Google Scholar 

  • Di Silvio, D., Rigby, N., Bajka, B., Mackie, A., & Baldelli Bombelli, F. (2015). Effect of protein corona magnetite nanoparticles derived from bread in vitro digestion on Caco-2 cells morphology and uptake. International Journal of Biochemistry and Cell Biology, S1357–2725, 30044-3.

    Google Scholar 

  • Duan, G., Kang, S. G., Tian, X., Garate, J. A., Zhao, L., Ge, C., & Zhou, R. (2015). Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale, 7, 15214–15224.

    Google Scholar 

  • EFSA. (2012). EFSA scientific committee; scientific opinion on exploring options for providing advice about possible human health risks based on the concept of threshold of toxicological concern (TTC). EFSA Journal, 10, 2750.

    Google Scholar 

  • EFSA Panel on Plant Protection Products and their Residues (PPR). (2012). Scientific opinion on evaluation of the toxicological relevance of pesticide metabolites for dietary risk assessment. EFSA Journal, 10, 2799 [2187 pp].

    Google Scholar 

  • El-Temsah, Y. S., Sevcu, A., Bobcikova, K., Cernik, M., & Joner, E. J. (2015). DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere, 144, 2221–2228.

    Article  Google Scholar 

  • ESAC. (2008). ESAC statement on the use of FCS and other animal-derived supplements. Retrieved November 30, 2015, from https://eurl-ecvam.jrc.ec.europa.eu/about-ecvam/archive-publications/publication/ESAC28_statement_FCS_20080508.pdf

  • Fadeel, B., Feliu, N., Vogt, C., Abdelmonem, A. M., & Parak, W. J. (2013). Bridge over troubled waters: Understanding the synthetic and biological identities of engineered nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 5, 111–129

    Google Scholar 

  • Frater, L., Stokes, E., Lee, R., & Oriola, T. (2006). An overview of the framework of current regulation affecting the development and marketing of nanomaterials: A report for the DTI. London: Department of Trade & Industry.

    Google Scholar 

  • Frawley, J. P. (1967). Scientific evidence and common sense as a basis for food-packaging regulations. Food and Cosmetics Toxicology, 5, 293–308.

    Article  Google Scholar 

  • Gajewicz, A., Schaeublin, N., Rasulev, B., Hussain, S., Leszczynska, D., Puzyn, T., & Leszczynski, J. (2015). Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies. Nanotoxicology, 9, 313–325.

    Google Scholar 

  • Haas, K. L., & Franz, K. J. (2009). Application of metal coordination chemistry to explore and manipulate cell biology. Chemistry Review, 109, 4921–4960.

    Article  Google Scholar 

  • Halamoda-Kenzaoui, B., Ceridono, M., Colpo, P., Valsesia, A., Urbán, P., Ojea-Jiménez, I., … Kinsner-Ovaskainen, A. (2015). Dispersion behaviour of silica nanoparticles in biological media and its influence on cellular uptake. PLoS One, 10, e0141593.

    Google Scholar 

  • Hassellöv, M., & Kaegi, R. (2009). Analysis and characterization of manufactured nanoparticles in aquatic environments. In J. R. Lead & E. Smith (Eds.), Environmental and human health impacts of nanotechnology. Oxford, England: Wiley.

    Google Scholar 

  • Izak-Nau, E., Huk, A., Reidy, B., Uggerud, H., Vadset, M., Eiden, S., … Lynch, I. (2015). Impact of storage conditions and storage time on silver: nanoparticles’ physicochemical properties and implications for their biological effects. RSC Advances, 5, 84172–84185.

    Google Scholar 

  • Jarvie, H. P., & King, S. M. (2010). Just scratching the surface? New techniques show how surface functionality of NPs influences their environmental fate. Nano Today, 5, 248–250.

    Article  Google Scholar 

  • Kanel, S. R., Greneche, J. M., & Choi, H. (2006). Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science and Technology, 40, 2045–2050.

    Article  Google Scholar 

  • Kent, R. D., Oser, J. G., & Vikesland, P. J. (2014). Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant. Environmental Science and Technology, 48, 8564–8572.

    Article  Google Scholar 

  • Kim, K. T., Klaine, S. J., Lin, S., Ke, P. C., & Kim, S. D. (2010). Acute toxicity of copper and single-walled carbon nanotubes to daphnia magna. Environmental Toxicology and Chemistry, 29, 122–126.

    Article  Google Scholar 

  • Kim, J. A., Salvati, A., Åberg, C., & Dawson, K. A. (2014). Suppression of nanoparticle cytotoxicity approaching in vivo serum concentrations: Limitations of in vitro testing for nanosafety. Nanoscale, 6(23), 14180–14184.

    Article  Google Scholar 

  • Kim, J. S., Song, K. S., Joo, H. J., Lee, J. H., & Yu, I. J. (2010). Determination of cytotoxicity attributed to multiwall carbon nanotubes (MWCNT) in normal human embryonic lung cell (WI-38) line. Journal of Toxicology and Environmental Health. Part A, 73, 1521–1529.

    Article  Google Scholar 

  • Kookana, R. S., Boxall, A. B., Reeves, P. T., Ashauer, R., Beulke, S., Chaudhry, Q., … Van den Brink, P. J. (2014). Nanopesticides: Guiding principles for regulatory evaluation of environmental risks. Journal of Agricultural and Food Chemistry, 62, 4227–4240.

    Google Scholar 

  • Kühnel, D., & Nickel, C. (2014). The OECD expert meeting on ecotoxicology and environmental fate—Towards the development of improved OECD guidelines for the testing of nanomaterials. Science of the Total Environment, 472, 347–353

    Article  Google Scholar 

  • Lee, R., & Vaughan, S. (2010). REACHing down: Nanomaterials and chemical safety in the EU. Journal of Law, Innovation and Technology, 2(2), 193–217.

    Article  Google Scholar 

  • Lee, R., & Stokes, E. (2009). Twenty-first century novel: Regulating nanotechnologies. Journal of Environmental Law, 21, 469–482.

    Article  Google Scholar 

  • Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11, 371–384.

    Article  Google Scholar 

  • Levard, C., Hotze, E. M., Lowry, G. V., & Brown, G. E., Jr. (2012). Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science and Technology, 46, 6900–6914.

    Article  Google Scholar 

  • Liu, J., von der Kammer, F., Zhang, B., Legros, S., & Hofmann, T. (2013). Combining spatially resolved hydrochemical data with in-vitro nanoparticle stability testing: assessing environmental behavior of functionalized gold nanoparticles on a continental scale. Environmental International, 59, 53–62.

    Article  Google Scholar 

  • Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of nanomaterials in the environment. Environmental Science and Technology, 46, 6893–6899.

    Article  Google Scholar 

  • Lynch, I., Dawson, K. A., Lead, J. R., & Valsami-Jones, E. (2014). Macromolecular coronas and their importance in nanotoxicology and nanoecotoxicology. In J. R. Lead & E. Valsami-Jones E. (Eds.), Nanoscience and the environment (Vol. 7).

    Google Scholar 

  • Ma, R., Levard, C., Michel, F. M., Brown, G. E., Jr., & Lowry, G. V. (2013). Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environmental Science and Technology, 47, 2527–2534.

    Article  Google Scholar 

  • Machado, S., Stawiński, W., Slonina, P., Pinto, A. R., Grosso, J. P., Nouws, H. P., … Delerue-Matos, C. (2013). Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Science of the Total Environment, 461–462, 323–329.

    Google Scholar 

  • Malkiewicz, K., Pettitt, M., Dawson, K. A., Toikka, A., Hansson, S. O., Hukkinen, J., … Lead, J. (2011). Nanomaterials in REACH—project report (SKEP) 15 August 2011 (final).

    Google Scholar 

  • Meesters, J. A., Veltman, K., Hendriks, A. J., & van de Meent, D. (2013). Environmental exposure assessment of engineered nanoparticles: Why REACH needs adjustment. Integrated Environmental Assessment and Management, 9, 15–26.

    Article  Google Scholar 

  • Monopoli, M. P., Walczyk, D., Campbell, A., Elia, G., Lynch, I., Bombelli, F. B., & Dawson, K. A. (2011). Physical-chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society, 133, 2525–2534.

    Google Scholar 

  • Mudunkotuwa, I. A., Pettibone, J. M., & Grassian, V. H. (2012). Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environmental Science and Technology, 46, 7001–7010.

    Article  Google Scholar 

  • Munro, I. C., Ford, R. A., Kenepohl, E., & Sprenger, J. G. (1996). Correlation of structural class with no-observed-effect-levels: A proposal for establishing a threshold of concern. Food and Chemical Toxicology, 34, 829–867.

    Article  Google Scholar 

  • Nasser, F., & Lynch, I. (2015). Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. Journal of Proteomics, S1874–3919, 30121–30124.

    Google Scholar 

  • Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A.-J., … Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered NPs to algae, plants, and fungi. Ecotoxicology, 17, 372–386.

    Google Scholar 

  • Nordlund, D. A., & Lewis, W. J. (1976). Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. Journal of Chemical Ecology, 2, 211–220.

    Article  Google Scholar 

  • OECD. (2014). Report of the OECD expert meeting on the pysical chemical properties of manufactured nanomaterials and test guidelines. ENV/JM/MONO(2014)15, environment, health and safety publications series on the safety of manufactured nanomaterials No. 41.

    Google Scholar 

  • Pastoor, T. P., Bachman, A. N., Bell, D. R., Cohen, S. M., Dellarco, M., Dewhurst, I. C., … Boobis, A. R. (2014). A 21st century roadmap for human health risk assessment. Critical Reviews in Toxicology, 44(Suppl 3), 1–5.

    Google Scholar 

  • Pearson, R. G. (1963). Hard and soft acids and bases. Journal of the American Chemical Society, 85, 3533–3539.

    Article  Google Scholar 

  • Petersen, E., Akkanen, J., Kukkonen, J. V. K., & Weber, W. J., Jr. (2009). Biological uptake and depuration of carbon nanotubes by Daphnia magna. Environmental Science and Technology, 43, 2969–2975.

    Article  Google Scholar 

  • Powley, M. W., Frederick, C. B., Sistare, F. D., & DeGeorge, J. J. (2009). Safety assessment of drug metabolites: implications of regulatory guidance and potential application of genetically engineered mouse models that express human P450s. Chemical Research in Toxicology, 22, 257–262.

    Article  Google Scholar 

  • Priester, J. H., Ge, Y., Mielke, R. E., Horst, A. M., Moritz, S. C., Espinosa, K., … Holden, P. A. (2012). Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences, 109, 14734–14735

    Google Scholar 

  • Prins, L. J. (2015). Emergence of complex chemistry on an organic monolayer. Accounts of Chemical Research, 48, 1920–1928.

    Article  Google Scholar 

  • Royal Commission on Environmental Protection (RCEP). (2008). Novel materials in the environment: The case of nanotechnology (27th Report, RCEP, London 71).

    Google Scholar 

  • Saleh, N. B., Aich, N., Plazas-Tuttle, J., Lead, J. R., & Lowry, G. V. (2015). Research strategy to determine when novel nanohybrids pose unique environmental risks. Environmental Science: Nano, 2, 11–18.

    Google Scholar 

  • Seitz, F., Lüderwald, S., Rosenfeldt, R. R., Schulz, P., & Bundschuh, M. (2015). Aging of TiO2 nanoparticles transiently increases their toxicity to the pelagic microcrustacean Daphnia magna. PLoS One, 10, e0126021.

    Article  Google Scholar 

  • Sokolov, V. I. (2009). Chiral stereochemistry of nanoparticles. Russian Journal of Coordination Chemistry, 35, 553–565.

    Article  Google Scholar 

  • Studer, C., Aicher, L., Gasic, B., von Goetz, N., Hoet, P., Huwyler, J., … Walser, T (2015). Scientific basis for regulatory decision-making of nanomaterials report on the workshop, 20-21 January 2014, Center of Applied Ecotoxicology, Dübendorf. Chimia (Aarau), 69, 52–56.

    Google Scholar 

  • Terry, C., Rasoulpour, R. J., Knowles, S., & Billington, R. (2015). Utilizing relative potency factors (RPF) and threshold of toxicological concern (TTC) concepts to assess hazard and human risk assessment profiles of environmental metabolites: A case study. Regulatory Toxicology and Pharmacology, 71, 301–317.

    Article  Google Scholar 

  • Toropova, A. P., Toropov, A. A., Veselinović, A. M., Veselinović, J. B., Benfenati, E., Leszczynska, D., & Leszczynski, J. (2015). Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions. Ecotoxicology and Environmental Safety, 124, 32–36.

    Google Scholar 

  • Valsami-Jones, E., & Lynch, I. (2015). NANOSAFETY. How safe are nanomaterials? Science, 350, 388–389.

    Article  Google Scholar 

  • Vaughan, S. (2015). EU chemicals regulation: New governance, hybridity and REACH. Cheltenham, England: Edward Elgar.

    Book  Google Scholar 

  • Walczyk, D., Bombelli, F. B., Monopoli, M. P., Lynch, I., & Dawson, K. A. (2010). What the cell “sees” in bionanoscience. Journal of the American Chemical Society, 132, 5761–5768.

    Article  Google Scholar 

  • Waldron, K. J., Rutherford, J. C., Ford, D., & Robinson, N. J. (2009). Metalloproteins and metal sensing. Nature, 460, 823–830.

    Article  Google Scholar 

  • Walkey, C. D., Olsen, J. B., Song, F., Liu, R., Guo, H., Olsen, D. W., … Chan, W. C. (2014). Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano, 8, 2439–2455.

    Google Scholar 

  • Wang, M. M., Wang, Y. C., Wang, X. N., Liu, Y., Zhang, H., Zhang, J. W., … Xu, A. (2015). Mutagenicity of ZnO nanoparticles in mammalian cells: Role of physicochemical transformations under the aging process. Nanotoxicology, 9, 972–982.

    Google Scholar 

  • Whitley, A. R., Levard, C., Oostveen, E., Bertsch, P. M., Matocha, C. J., von der Kammer, F., & Unrine, J. M. (2013). Behavior of Ag nanoparticles in soil: Effects of particle surface coating, aging and sewage sludge amendment. Environmental Pollution, 182, 141–149.

    Google Scholar 

  • Workentine, M. L., Harrison, J. J., Stenroos, P. U., Ceri, H., & Turner, R. J. (2008). Pseudomonas fluorescens’ view of the periodic table. Environmental Microbiology, 10, 238–250.

    Google Scholar 

  • Yang, S. T., Liu, Y., Wang, Y. W., & Cao, A. (2013). Biosafety and bioapplication of nanomaterials by designing protein–nanoparticle interactions. Small, 9, 1635–1653.

    Article  Google Scholar 

Download references

Acknowledgement

This chapter is based on concepts developed within EU FP7 Marie Curie Career Integration grant EcofriendlyNano (PCIG14-GA-2013-631612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iseult Lynch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lynch, I., Lee, R.G. (2016). In Support of the Inclusion of Data on Nanomaterials Transformations and Environmental Interactions into Existing Regulatory Frameworks. In: Murphy, F., McAlea, E., Mullins, M. (eds) Managing Risk in Nanotechnology. Innovation, Technology, and Knowledge Management. Springer, Cham. https://doi.org/10.1007/978-3-319-32392-3_9

Download citation

Publish with us

Policies and ethics