Skip to main content

Stability and Stabilization for Continuous-Time Difference Equations with Distributed Delay

  • Chapter
  • First Online:
Delays and Networked Control Systems

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 6))

Abstract

Motivated by linear hyperbolic conservation laws , we investigate in this chapter new conditions for stability and stabilization for linear continuous-time difference equations with distributed delay . For this, we propose first a state-space realization of networks of linear hyperbolic conservation laws via continuous-time difference equations. Then, based on some recent works, we propose sufficient conditions for exponential stability , which appear also to be necessary and sufficient in some particular cases. Then, the stabilization problem as well as the closed-loop performances are analyzed with constructive methods for state feedback synthesis.

This chapter represents an extended version of the conference proceedings paper [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.E. Avellar, J.K. Hale, On the zeros of exponentials polynomials. J. Math. Anal. Appl. 73(2), 434–452 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Aw, M. Rascle, Resurection of second-order models for traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. P.S. Barnett, The analysis of traveling waves on power system transmission lines. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand (1974)

    Google Scholar 

  4. G. Bastin, B. Haut, J.M. Coron, B. d’Andrea-Novel, Lyapunov stability analysis of networks of scalar conservation laws. Netw. Heterogen. Media 2(4), 749–757 (2007)

    MathSciNet  MATH  Google Scholar 

  5. R. Bellman, K.L. Cooke, Differential-Difference Equations. (Academic Press, 1963)

    Google Scholar 

  6. A. Bressan, in Hyperbolic Systems of Conservation Laws, The One Dimensional Cauchy Problem (Oxford University Press, 2000)

    Google Scholar 

  7. L.A.V. Carvalho, On quadratic Lyapunov functionals for linear difference equations. Linear Algebra Appl. 240, 41–64 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. K.L. Cooke, D.W. Krumme, Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations. J. Math. Anal. Appl. 24(2), 372–387 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Corduneanu, Integral Equations and Applications. (Cambridge University Press, 1991)

    Google Scholar 

  10. J.M. Coron, B. d’Andrea-Novel, G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Autom. Control 52(1), 2–11 (2006)

    Article  MathSciNet  Google Scholar 

  11. J.M. Coron, G. Bastin, B. d’Andrea-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47(3), 1460–1498 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Damak, M. Di Loreto, W. Lombardi, V. Andrieu, Exponential \(L_2\)-stability for a class of linear systems governed by continuous-time difference equations. Automatica 50(12), 3299–3303 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Damak, M. Di Loreto, S. Mondié, Stability of linear continuous-time difference equations with distributed delay: constructive exponential estimates. Int. J. Robust Nonlinear Control 25(17), 3195–3209 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Damak, M. Di Loreto, S. Mondié, Difference equations in continuous time with distributed delay: exponential estimates, in IEEE American Control Conference (ACC) (2014)

    Google Scholar 

  15. R. Datko, Representation of solutions and stability of linear differential-difference equations in a Banach space. J. Differ. Equ. 29(1), 105–166 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Diagne, G. Bastin, J.M. Coron, Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws. Automatica 48(1), 109–114 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Di Loreto, J.J. Loiseau, in On the Stability of Positive Difference Equations, ed. by R. Sipahi, T. Vyhlidal, S.I. Niculescu, P. Pepe. Time Delay Systems - Methods, Applications and New Trends, Series LNCIS, vol. 423. (Springer, 2012), pp. 125–147

    Google Scholar 

  18. F. Di Meglio, R. Vazquez, M. Krstic, Stabilization of a system of \(n+1\) coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans. Autom. Control 58(12), 3097–3111 (2013)

    Article  MathSciNet  Google Scholar 

  19. S. Elaydi. An Introduction to Difference Equations., 3rd edn (Springer, 2005)

    Google Scholar 

  20. E. Fridman, Stability of linear descriptor systems with delay: a Lyapunov-based approach. J. Math. Anal. Appl. 273(1), 24–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Grabowski, F.M. Callier, Boundary control systems in factor form: transfer functions and input-output maps. Integr. Eqn. Oper. Theory 41(1), 1–37 (2001). Birkhauser, Basel

    Google Scholar 

  22. K. Gu, Stability problem of systems with multiple delay channels. Automatica 46(4), 743–751 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems. (Birkhauser, 2003)

    Google Scholar 

  24. M. Gugat, M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas network. ESAIM Control Optim. Calc. Var. 17(1), 28–51 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Halanay, V. Răsvan, Stability radii for some propagation models. IMA J. Math. Control Inf. 14(1), 95–107 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations. (Springer, 1993)

    Google Scholar 

  27. J.K. Hale, S.M. Verduyn Lunel, in Effects of Small Delays on Stability and Control., ed. by H. Bart, I. Gohberg, A. Ran. Operator Theory and analysis, vol. 122 (Birkhauser, 2001), pp. 275–301

    Google Scholar 

  28. J.K. Hale, S.M. Verduyn, Lunel, Strong stabilization of neutral functional differential equations. IMA J. Math. Control Inf. 19(1–2), 5–23 (2002)

    Google Scholar 

  29. J.K. Hale, S.M. Verduyn, Lunel stability and control of feedback systems with time-delays. Int. J. Syst. Sci. 34(8–9), 497–504 (2003)

    Article  MATH  Google Scholar 

  30. J. de Halleux, C. Prieur, J.M. Coron, B. d’Andrea-Novel, G. Bastin, Boundary feedback control in networks of open-channels. Automatica 39(8), 1365–1676 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. A.J. Jerri, Introduction to Integral Equations with Applications, 2nd edn (Wiley, 1999)

    Google Scholar 

  32. V.L. Kharitonov, Lyapunov functionals and Lyapunov matrices for neutral type time delay systems: a single delay case. Int. J. Control 78(11), 783–800 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Krstic, A. Smyshlyaev, Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst. Control Lett. 57(9), 750–758 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. X. Litrico, V. Fromion, Boundary control of hyperbolic conservation laws using a frequency domain approach. Automatica 45(3), 647–659 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Logemann, S. Townley, The effect of small delays in the feedback loop on the stability of neutral systems. Syst. Control Lett. 27(5), 267–274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Massioni, M. Verhaegen, Distributed control for identical dynamically coupled systems: a decomposition approach. IEEE Trans. Autom. Control, 54(1), 124–135 (2009)

    Google Scholar 

  37. D. Melchor-Aguilar, Exponential stability of some linear continuous time difference systems. Syst. Control Lett. 61(1), 62–68 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Melchor-Aguilar, Exponential stability of linear continuous time difference systems with multiple delays. Syst. Control Lett. 62(10), 811–818 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Mondié, D. Melchor-Aguilar, Exponential stability of integral delay systems with a class of analytical kernels. IEEE Trans. Autom. Control 57(2), 484–489 (2012)

    Google Scholar 

  40. P. Pepe, The Lyapunov’s second method for continuous time difference equations. Int. J. Robust Nonlinear Control 13(15), 1389–1405 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. C. Prieur, Control of systems of conservation laws with boundary errors. Netw. Heterogen. Media 4(2), 393–407 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. V. Răsvan, S.I. Niculescu, Oscillations in lossless propagation models: a Liapunov-Krasovskii approach. IMA J. Math. Control Inf. 19(1–2), 157–172 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Răsvan, in Delays, Propagation, Conservation Laws, ed. by R. Sipahi, T. Vyhlidal, S.I. Niculescu, P. Pepe. Time Delay Systems: Methods, Applications and New Trends LNCIS, vol. 423. (Springer, 2012), pp. 147–159

    Google Scholar 

  44. L. Shaikhet, About Lyapunov functionals construction for difference equations with continuous time. Appl. Math. Lett. 17(8), 985–991 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Valein, E. Zuazua, Stabilization of the wave equation on 1-D networks. SIAM J. Control Optim. 48(4), 2771–2797 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. E. Verriest, New qualitative methods for stability of delay systems. Kybernetika 37(3), 225–228 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Di Loreto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Di Loreto, M., Damak, S., Mondié, S. (2016). Stability and Stabilization for Continuous-Time Difference Equations with Distributed Delay. In: Seuret, A., Hetel, L., Daafouz, J., Johansson, K. (eds) Delays and Networked Control Systems . Advances in Delays and Dynamics, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-32372-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32372-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32371-8

  • Online ISBN: 978-3-319-32372-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics