Skip to main content

Analysis of Mechanisms for PVP-Active-Agent Formulation as in Supercritical Antisolvent Spray Process

  • Chapter
  • First Online:
Book cover Process-Spray

Abstract

Supercritical antisolvent technology can precipitate polyvinylpyrrolidone (PVP) particles and crystallize paracetamol (PCM) crystals first separately and then together in the form of a solid dispersion. Supercritical carbon dioxide (scCO2) is used as an antisolvent. For PVP particle generation, ethanol, acetone, and mixtures of ethanol and acetone are used as solvents. The initial concentration of PVP in the solution was varied between 0.5 and 5 wt%, the operation pressure between 10 and 30 MPa, and the composition of ethanol/acetone solvent mixtures between 100 and 0 wt% of ethanol at a constant temperature of 313 K. An increase in the content of the “poor” solvent acetone in the initial solution leads to a significant decrease in mean particle size. Fully amorphous PVP powder always precipitates for all the parameters investigated.

For PCM powder generation, ethanol, acetone, and mixtures of ethanol and acetone are used as solvents. The initial PCM concentration in the solution was varied between 0.5 and 5 wt% and the operation pressure between 10 and 16 MPa. A variation of these parameters leads to a manipulation of the size and the morphology of the crystallized PCM crystals. Irrespective of parameters such as pressure or concentration, the same polymorphic form of paracetamol is always produced for pure solvents. When generating PCM particles from mixtures of ethanol and acetone, two different crystal forms were detected depending on the ratio between the solvents.

The solid dispersions were generated at different ratios of PVP to PCM. These solute mixtures were also dissolved in pure ethanol and pure acetone as well as in different mixtures of these two solvents. Fully amorphous solid dispersions consisting of PCM and PVP together were generated at different ratios of PVP to PCM. All influences of parameters were investigated and discussed in detail.

The mechanisms that control the final particle properties are discussed taking into account two different models for “ideal” and “nonideal” solutes. Furthermore, the study of “unconventional” supercritical antisolvent (SAS) process parameters such as the solvation power of the solvent shows that these parameters qualify to tailor polymer particle properties via SAS processing. In addition, investigating the behavior of both solutes separately, fully amorphous solid dispersions consisting of PCM and PVP together were generated. The crystalline structure and solid dispersions of the particles was analyzed using X-ray and their morphology was analyzed using scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rossmann, M. (2015). Tailor made functional particles by means of supercritical antisolvent (SAS) processing. Friedrich-Alexander-Universität Erlangen-Nürnberg.

    Google Scholar 

  2. Paudel, A., Worku, Z. A., Meeus, J., Guns, S., & Van den Mooter, G. (2013). Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. International Journal of Pharmaceutics, 453, 253–284.

    Article  Google Scholar 

  3. Chiou, W. L., & Riegelman, S. (1971). Pharmaceutical applications of solid dispersion systems. Journal of Pharmaceutical Sciences, 60, 1281–1302.

    Article  Google Scholar 

  4. Badens, E., Majerik, V., Horváth, G., Szokonya, L., Bosc, N., Teillaud, E., et al. (2009). Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies. International Journal of Pharmaceutics, 377, 25–34.

    Article  Google Scholar 

  5. Lim, R. T. Y., Ng, W. K., & Tan, R. B. H. (2010). Amorphization of pharmaceutical compound by co-precipitation using supercritical anti-solvent (SAS) process (Part I). Journal of Supercritical Fluids, 53, 179–184.

    Article  Google Scholar 

  6. Garekani, H. A., Sadeghi, F., & Ghazi, A. (2003). Increasing the aqueous solubility of acetaminophen in the presence of polyvinylpyrrolidone and investigation of the mechanisms involved. Drug Development and Industrial Pharmacy, 29, 173–179.

    Article  Google Scholar 

  7. Muhrer, G., Meier, U., Fusaro, F., Albano, S., & Mazzotti, M. (2006). Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: Generation of drug microparticles and drug–polymer solid dispersions. International Journal of Pharmaceutics, 308, 69–83.

    Article  Google Scholar 

  8. Kluge, J., Fusaro, F., Muhrer, G., Thakur, R., & Mazzotti, M. (2009). Rational design of drug–polymer co-formulations by CO2 anti-solvent precipitation. The Journal of Supercritical Fluids, 48, 176–182.

    Article  Google Scholar 

  9. Wu, K., Li, J., Wang, W., & Winstead, D. A. (2009). Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent. Journal of Pharmaceutical Sciences, 98, 2422–2431.

    Article  Google Scholar 

  10. Rossmann, M., Braeuer, A., & Schluecker, E. (2014). Supercritical antisolvent micronization of PVP and ibuprofen sodium towards tailored solid dispersions. Journal of Supercritical Fluids, 89, 16–27.

    Article  Google Scholar 

  11. Reverchon, E., De Marco, I., & Torino, E. (2007). Nanoparticles production by supercritical antisolvent precipitation: A general interpretation. The Journal of Supercritical Fluids, 43, 126–138.

    Article  Google Scholar 

  12. Reverchon, E., Adami, R., Caputo, G., & De Marco, I. (2008). Spherical microparticles production by supercritical antisolvent precipitation: Interpretation of results. The Journal of Supercritical Fluids, 47, 70–84.

    Article  Google Scholar 

  13. Reverchon, E., De Marco, I., Adami, R., & Caputo, G. (2008). Expanded micro-particles by supercritical antisolvent precipitation: Interpretation of results. The Journal of Supercritical Fluids, 44, 98–108.

    Article  Google Scholar 

  14. Boutin, O., Petit-Gas, T., & Badens, E. (2009). Powder micronization using a CO2 supercritical antisolvent type process: Comparison of different introduction devices. Industrial & Engineering Chemistry Research, 48, 5671–5678.

    Article  Google Scholar 

  15. Martín, A., Bouchard, A., Hofland, G. W., Witkamp, G. J., & Cocero, M. J. (2007). Mathematical modeling of the mass transfer from aqueous solutions in a supercritical fluid during particle formation. The Journal of Supercritical Fluids, 41, 126–137.

    Article  Google Scholar 

  16. Martín, Á., Scholle, K., Mattea, F., Meterc, D., & Cocero, M. J. (2009). Production of polymorphs of ibuprofen sodium by supercritical antisolvent (SAS) precipitation. Crystal Growth & Design, 9, 2504–2511.

    Article  Google Scholar 

  17. Wubbolts, F. E., Bruinsma, O. S. L., & Van Rosmalen, G. M. (2004). Measurement and modelling of the solubility of solids in mixtures of common solvents and compressed gases. Journal of Supercritical Fluids, 32, 79–87.

    Article  Google Scholar 

  18. De Marco, I., Knauer, O., Cice, F., Braeuer, A., & Reverchon, E. (2012). Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization: The influence of solvents. Chemical Engineering Journal, 203, 71–80.

    Article  Google Scholar 

  19. Dowy, S., Braeuer, A., Reinhold-López, K., & Leipertz, A. (2009). Laser analyses of mixture formation and the influence of solute on particle precipitation in the SAS process. Journal of Supercritical Fluids, 50, 265–275.

    Article  Google Scholar 

  20. Dowy, S., Braeuer, A., Schatz, R., Schluecker, E., & Leipertz, A. (2009). CO2 partial density distribution during high-pressure mixing with ethanol in the supercritical antisolvent process. Journal of Supercritical Fluids, 48, 195–202.

    Article  Google Scholar 

  21. Kordikowski, A., Schenk, A. P., Van Nielen, R. M., & Peters, C. J. (1995). Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. The Journal of Supercritical Fluids, 8, 205–216.

    Article  Google Scholar 

  22. Span, R., & Wagner, W. (2003). Equations of state for technical applications. I. Simultaneously optimized functional forms for nonpolar and polar fluids. International Journal of Thermophysics, 24, 1–39.

    Article  Google Scholar 

  23. Reverchon, E., Torino, E., Dowy, S., Braeuer, A., & Leipertz, A. (2010). Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization. Chemical Engineering Journal, 156, 446–458.

    Article  Google Scholar 

  24. Dowy, S., Braeuer, A., Reinhold-López, K., & Leipertz, A. (2010). In situ optical monitoring of the solution concentration influence on supercritical particle precipitation. Journal of Supercritical Fluids, 55, 282–291.

    Article  Google Scholar 

  25. Dukhin, S. S., Zhu, C., Dave, R., Pfeffer, R., Luo, J. J., Chávez, F., et al. (2003). Dynamic interfacial tension near critical point of a solvent–antisolvent mixture and laminar jet stabilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 229, 181–199.

    Article  Google Scholar 

  26. Bellan, J. (2000). Supercritical (and subcritical) fluid behavior and modeling: Drops, streams, shear and mixing layers, jets and sprays. Progress in Energy and Combustion Science, 26, 329–366.

    Article  Google Scholar 

  27. Myerson, A. S. (1993). Handbook of industrial crystallization. Boston: Butterworth-Heinemann.

    Google Scholar 

  28. Bristow, S., Shekunov, T., Shekunov, B. Y., & York, P. (2001). Analysis of the supersaturation and precipitation process with supercritical CO2. The Journal of Supercritical Fluids, 21, 257–271.

    Article  Google Scholar 

  29. Mukhopadhyay, M., & Dalvi, S. V. (2005). Analysis of supersaturation and nucleation in a moving solution droplet with flowing supercritical carbon dioxide. Journal of Chemical Technology & Biotechnology, 80, 445–454.

    Article  Google Scholar 

  30. Debenedetti, P. G. (1990). Homogeneous nucleation in supercritical fluids. AIChE Journal, 36, 1289–1298.

    Article  Google Scholar 

  31. Guinier, A. (1963). X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. San Francisco: W.H. Freeman.

    Google Scholar 

  32. Ruether, F., & Sadowski, G. (2009). Modeling the solubility of pharmaceuticals in pure solvents and solvent mixtures for drug process design. Journal of Pharmaceutical Sciences, 98, 4205–4215.

    Article  Google Scholar 

  33. Malavolta, L., Oliveira, E., Cilli, E. M., & Nakaie, C. R. (2002). Solvation of polymers as model for solvent effect investigation: Proposition of a novel polarity scale. Tetrahedron, 58, 4383–4394.

    Article  Google Scholar 

  34. Gokhale, A., Khusid, B., Dave, R. N., & Pfeffer, R. (2007). Effect of solvent strength and operating pressure on the formation of submicrometer polymer particles in supercritical microjets. The Journal of Supercritical Fluids, 43, 341–356.

    Article  Google Scholar 

  35. Rossmann, M., Braeuer, A., Dowy, S., Gallinger, T. G., Leipertz, A., & Schluecker, E. (2012). Solute solubility as criterion for the appearance of amorphous particle precipitation or crystallization in the supercritical antisolvent (SAS) process. Journal of Supercritical Fluids, 66, 350–358.

    Article  Google Scholar 

  36. De Marco, I., Rossmann, M., Prosapio, V., Reverchon, E., & Braeuer, A. (2015). Control of particle size, at micrometric and nanometric range, using supercritical antisolvent precipitation from solvent mixtures: Application to PVP. Chemical Engineering Journal, 273, 344–352.

    Article  Google Scholar 

  37. Chiu, H.-Y., Lee, M.-J., & Lin, H.-m. (2008). Vapor–liquid phase boundaries of binary mixtures of carbon dioxide with ethanol and acetone. Journal of Chemical & Engineering Data, 53, 2393–2402.

    Article  Google Scholar 

  38. De Marco, I., Prosapio, V., Cice, F., & Reverchon, E. (2013). Use of solvent mixtures in supercritical antisolvent process to modify precipitates morphology: Cellulose acetate microparticles. The Journal of Supercritical Fluids, 83, 153–160.

    Article  Google Scholar 

  39. Lazzaroni, M. J., Bush, D., Brown, J. S., & Eckert, C. A. (2005). High-pressure vapor–liquid equilbria of some carbon dioxide + organic binary systems. Journal of Chemical & Engineering Data, 50, 60–65.

    Article  Google Scholar 

  40. Sala, S., Danten, Y., Ventosa, N., Tassaing, T., Besnard, M., & Veciana, J. (2006). Solute–solvent interactions governing preferential solvation phenomena of acetaminophen in CO2-expanded organic solutions: A spectroscopic and theoretical study. The Journal of Supercritical Fluids, 38, 295–305.

    Article  Google Scholar 

  41. Rossmann, M., Braeuer, A., Leipertz, A., & Schluecker, E. (2013). Manipulating the size, the morphology and the polymorphism of acetaminophen using supercritical antisolvent (SAS) precipitation. Journal of Supercritical Fluids, 82, 230–237.

    Article  Google Scholar 

  42. Varona, S., Fernández, J., Rossmann, M., & Braeuer, A. (2013). Solubility of paracetamol and polyvinylpyrrolidone in mixtures of carbon dioxide, ethanol, and acetone at elevated pressures. Journal of Chemical & Engineering Data, 58, 1054–1061.

    Article  Google Scholar 

  43. Dowy, S., Torino, E., Luther, S. K., Rossmann, M., & Braeuer, A. (2011). Imaging the supersaturation in high-pressure systems for particle generation. Chemical Engineering Journal, 168, 896–902.

    Article  Google Scholar 

  44. Perlovich, G. L., Volkova, T. V., & Bauer-Brandl, A. (2007). Polymorphism of paracetamol: Relative stability of the monoclinic and orthorhombic phase revisited by sublimation and solution calorimetry. Journal of Thermal Analysis and Calorimetry, 89, 767–774.

    Article  Google Scholar 

  45. Gurunath, S., Pradeep Kumar, S., Basavaraj, N. K., & Patil, P. A. (2013). Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs. Journal of Pharmacy Research, 6, 476–480.

    Article  Google Scholar 

  46. Kachrimanis, K., Fucke, K., Noisternig, M., Siebenhaar, B., & Griesser, U. (2008). Effects of moisture and residual solvent on the phase stability of orthorhombic paracetamol. Pharmaceutical Research, 25, 1440–1449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Braeuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rossmann, M. et al. (2016). Analysis of Mechanisms for PVP-Active-Agent Formulation as in Supercritical Antisolvent Spray Process. In: Fritsching, U. (eds) Process-Spray. Springer, Cham. https://doi.org/10.1007/978-3-319-32370-1_24

Download citation

Publish with us

Policies and ethics