Skip to main content

Experimental Evaluation and Control of Interaction of Gas Environment and Rotary Atomized Spray for Production of Narrow Particle Size Distribution

  • Chapter
  • First Online:
Book cover Process-Spray
  • 1407 Accesses

Abstract

The production of particles with a narrow particle size distribution by spray drying is a demanding challenge in industrial application. The laminar thread breakup is one option as employed by an innovative rotary spraying device (Schröder and Walzel, Chemical Engineering and Technology 21: 349–354, 1998; Erzeugung und Zerfall gedehnter Laminarstrahlen im Schwerefeld, Aachen, 2002; Designing thread forming rotary atomizers by similarity trials, 2012; Einfluss der Gasführung in Sprühtrocknern auf den Fadenzerfall an Rotationszerstäubern—Analyse und Optimierung, München, 2012). The feed enters the rotary wheel from the top and flows through the device as laminar open channel flow. It leaves the cup through bores and single laminar threads are obtained upon detachment. These threads ideally break up driven by surface tension. In spray experiments, a broader drop size distribution is observed than expected from theory. Within the presented work, the effect of a relative velocity between the thread the ambient gas on the laminar thread breakup is identified and addressed as mayor factor (Mescher et al., Chemical Engineering Science 69:181–192, 2012).

A similarity trial is used to quantify the influence of the cross-wind flow. The result influences the design of a gas distributor for small particles with a narrow size distribution. The gas distributor is designed by flow simulation (CFD) for noncommercial spray dryer (D = 2.7 m and H = 3.7 m) (Einfluss der Gasführung in Sprühtrocknern auf den Fadenzerfall an Rotationszerstäubern—Analyse und Optimierung, München, 2012). Spray drying experiments with aqueous PVP solution and Mannitol solution were performed to validate and to improve the gas distribution concept. Small particles with a narrow particle size distribution were obtained during experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Acceleration [m/s2]

A :

Area [m2]

API:

Active pharmaceutical ingredient

C :

Constant

D, d :

Diameter [m]

H :

Height [m]

k* :

Critical dimensionless wave number

L :

Length [m]

LamRot:

Laminar operating rotary atomizer

m :

Friction exponent

n :

Rotational speed [rpm]

p, Δp :

Pressure/pressure difference [Pa]

PVP:

Polyvinylpyrrolidon

Q :

Wave growth rate

R, r :

Radius [m]

T :

Temperature [°C]

t :

Time [s]

v, u :

Velocity [m/s]

α :

Inclination angle [°]

Φ :

Turning angle [°]

λ :

Wave length [m]

μ :

Dynamic viscosity [Pa s]

ρ :

Density [kg/m3]

σ :

Surface tension [N/m]

ω :

Angular velocity [1/s]

0:

Without cross-wind flow

10.3:

10 % percentile of volume distribution

50.3:

50 % percentile of volume distribution

90.3:

90 % percentile of volume distribution

ax:

Axial

b:

Breakup

crit:

Critical

d:

Drop

exp:

Experimental

g:

Gas

in, out:

Inlet/outlet

liq, l:

Liquid

opt:

Optimal

pred:

Predicted

rel:

Relative

th,b:

Thread breakup

theo:

Theoretical

*:

Dimensionless

Bo = D 2 ρ liq a/σ lg :

Bond number

d* = d 50.3 (σ lg/(ρ liq a))1/2 :

Dimensionless mean drop size

Δ = πr in D/(2A out):

Swirl parameter

\( \mu *=\mu {\left(\frac{a}{\rho_{\mathrm{liq}}{\sigma}_{\lg}^3}\right)}^{0.25} \) :

Dimensionless viscosity

L c = (σ lg/(ρ liq a))1/2 :

Capillary Length

L* = L b (σ lg/(ρ liq a))1/2 :

Dimensionless breakup length

Oh = μ/(σ lg ρ liq D)½ :

Ohnesorge number

Re = ρ lig v D/μ liq :

Reynolds number

span = (d 90.3 − d 10.3)/d 50.3 :

Span value

\( \overset{.}{V}*=\overset{.}{V}{\left(\frac{\rho_{\mathrm{liq}}^5{a}^3}{\sigma_{\lg}^5}\right)}^{0.25} \) :

Dimensionless flow rate

We = v 2 ρ liq D/σ lg :

Weber number

\( W{e}_{\mathrm{g}}={v}_{\mathrm{rel}}^2{L}_{\mathrm{c}}{\rho}_{\mathrm{g}}/{\sigma}_{\lg } \) :

Gas-Weber number

References

  1. Masters, K. (1985). Spray drying handbook (4th ed.). London: Godwin.

    Google Scholar 

  2. Tsotsas, E., & Mujumdar, A. S. (2011). Modern drying technology. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  3. Walzel, P. (1990). Zerstäuben von Flüssigkeiten. Chemie Ingenieur Technik, 62(12), 983–994. doi:10.1002/cite.330621203.

    Article  Google Scholar 

  4. Walzel, P. (2000). Spraying and atomizing of liquids. In Ullmann’s encyclopedia of industrial chemistry. Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  5. Walzel, P., & Schröder, T. (1994). Gestaltung laminar betriebener Rotationszerstäuber unter Berücksichtigung der Abströmgeometrie. Chemie Ingenieur Technik, 70(4), 400–405. doi:10.1002/cite.330700408.

    Google Scholar 

  6. Rayleigh (1878) On the instability of jets. Proc. London Math. Soc., 10. pp 4–13.

    Google Scholar 

  7. Schröder, T. (1997). Tropfenbildung an Gerinneströmungen im Schwere- und Zentrifugalfeld. Düsseldorf: VDI.

    Google Scholar 

  8. Brauer, H. (1971). Grundlagen der Einphasen- und Mehrphasenströmungen. Grundlagen der chemischen Technik. Aarau: Sauerländer [u.a.].

    Google Scholar 

  9. Rayleigh, L. (1890). On the tension of recently formed liquid surfaces. London: Harrison and Sons.

    Google Scholar 

  10. J. Kamplade, T. Mack, A. Küsters und P. Walzel Breakup of threads from laminar open channel flow influenced by cross-wind gas flow ASME 2014 - 4th Joint US-European Fluids Engineering Division Summer Meeting, Chicago, USA, 4-7.August 2014 doi:10.1115/FEDSM2014-2124

    Google Scholar 

  11. Mescher, A. (2012). Einfluss der Gasführung in Sprühtrocknern auf den Fadenzerfall an Rotationszerstäubern—Analyse und Optimierung (Schriftenreihe mechanische Verfahrenstechnik 1st ed., Vol. 18). München: Dr. Hut.

    Google Scholar 

  12. P. Walzel, G. Schaldach, H. Wiggers, New Aspects for the Application and Performance of Lamrot Atomizers, ILASS 2008, 8th September -10th September 2008, Como, Italien Proceedings Paper ID 1-1, pp. 1 - 8.

    Google Scholar 

  13. Mescher, A., Littringer, E. M., Paus, R., Urbanetz, N. A., & Walzel, P. (2012). Homogene Produkteigenschaften in der Sprühtrocknung durch laminare Rotationszerstäubung. Chemie Ingenieur Technik, 84(1–2), 154–159. doi:10.1002/cite.201100155.

    Article  Google Scholar 

  14. A. Mescher and P. Walzel Designing Thread forming Rotary Atomizers by Similarity Trials ICLASS 2012, 2nd September - 6th September 2012, Heidelberg Proceedings Paper.

    Google Scholar 

  15. S. Schneider, P. Walzel "Disintegration of liquid jets under gravity" ILASS Meeting vom 05. - 07.07.99 in Toulouse, Frankreich.

    Google Scholar 

  16. Buckingham, E. (1914). On physically similar systems; Illustrations of the use of dimensional equations. Physics Review, 4(4), 345–376. doi:10.1103/PhysRev.4.345.

    Article  Google Scholar 

  17. Schneider, S. (2002). Erzeugung und Zerfall gedehnter Laminarstrahlen im Schwerefeld (Schriftenreihe mechanische Verfahrenstechnik, Vol. 4). Aachen: Shaker.

    Google Scholar 

  18. Weisbach, J. (1855). Die experimental—hydraulic. Freiberg: Engelhardt.

    Google Scholar 

  19. Scheuermann, R. (1919). Über die Gestalt und die Auflösung des fallenden Flüssigkeitsstrahles. Annales de Physique, 365(19), 233–259. doi:10.1002/andp.19193651903.

    Article  Google Scholar 

  20. Eggers, J., & Dupont, T. F. (1994). Drop formation in a one-dimensional approximation of the Navier–Stokes equation. Journal of Fluid Mechanics, 262(1), 205. doi:10.1017/S0022112094000480.

    Article  Google Scholar 

  21. Cheong, B., & Howes, T. (2005). Effect of initial disturbance amplitude in gravity affected jet break-up. Chemical Engineering Science, 60(13), 3715–3719. doi:10.1016/j.ces.2005.02.014.

    Article  Google Scholar 

  22. Nonnemacher, S. (2003). Numerische und experimentelle Untersuchung der Restentgasung in statischen Entgasungsapparaten. Dissertation, Universität Stuttgart.

    Google Scholar 

  23. Cheong, B., & Howes, T. (2004). Capillary jet instability under the influence of gravity. Chemical Engineering Science, 59(11), 2145–2157. doi:10.1016/j.ces.2004.02.008.

    Article  Google Scholar 

  24. Ohnesorge, W. (1936). Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen. Zeitschrift für Angewandte Mathematik und Mechanik, 1936(16), 355–385.

    Article  Google Scholar 

  25. Plateau, J. (1873). Statique experimentale et theorique des liquides soumis aux seules forces moleculaires. Paris: Gauthier-Villars.

    Google Scholar 

  26. Weber, C. (1931). Zum Zerfall eines Flüssigkeitsstrahles. Zeitschrift für Angewandte Mathematik und Mechanik, 11(2), 136–154. doi:10.1002/zamm.19310110207.

    Article  Google Scholar 

  27. Haenlein, A. (1931). Über den Zerfall eines Flüssigkeitsstrahles. Forschung auf dem Gebiet des Ingenieurwesens, 2, 139–149.

    Article  Google Scholar 

  28. Bohr, N. (1909). Determination of the surface-tension of water by the method of jet vibration. Philosophical Transactions of the Royal Society of London, A209, 281–317.

    Article  Google Scholar 

  29. Bechtel, S., Cooper, J., Forest, M., Petersson, N. A., Reichard, D. L., Saleh, A., et al. (1995). A new model to determine dynamic surface tension and elongational viscosity using oscillating jet measurements. Journal of Fluid Mechanics, 293(1), 379. doi:10.1017/S0022112095001753.

    Article  Google Scholar 

  30. Howell, E., Megaridis, C., & McNallan, M. (2004). Dynamic surface tension measurements of molten Sn/Pb solder using oscillating slender elliptical jets. International Journal of Heat and Fluid Flow, 25(1), 91–102. doi:10.1016/j.ijheatfluidflow.2003.10.003.

    Article  Google Scholar 

  31. Schröder, T., & Walzel, P. (1998). Design of laminar operating rotary atomizers under consideration of the detachment geometry. Chemical Engineering and Technology, 21(4), 349–354.

    Article  Google Scholar 

  32. Kitamura, Y., & Takahashi, T. (1976). Stability of a liquid jet in air flow normal to the jet axis. Journal of Chemical Engineering of Japan, 9(4), 282–286.

    Article  Google Scholar 

  33. Mescher, A., Möller, A., Dirks, M., & Walzel, P. (2012). Gravity affected break-up of laminar threads at low gas-relative-velocities. Chemical Engineering Science, 69(1), 181–192. doi:10.1016/j.ces.2011.10.021.

    Article  Google Scholar 

  34. Gramlich, S., Mescher, A., Piesche, M., & Walzel, P. (2011). Modellierung und experimentelle Untersuchung des gasinduzierten Zerfalls gedehnter Flüssigkeitsstrahlen im Erdschwerefeld. Chemie Ingenieur Technik, 83(3), 273–279. doi:10.1002/cite.201000183.

    Article  Google Scholar 

  35. Gramlich, S., Mescher, A., Piesche, M., & Walzel, P. (2011). Modeling and numerical simulation of the gas-induced breakup of liquid threads stretched by gravity. Chemical Engineering and Technology, 34(6), 921–926. doi:10.1002/ceat.201100138.

    Article  Google Scholar 

  36. Kamplade, J., Küesters, A., Mack, T., et al. (Submitted). Similarity trials on the thread breakup from open channel flow at laminar rotary atomizer. Chemical Engineering and Technology (Submitted for publication).

    Google Scholar 

  37. Koch, M. (2003). Beiträge zur Katalysatorverkapselung im Sprühverfahren (Schriftenreihe mechanische Verfahrenstechnik, Vol. 6). Aachen: Shaker.

    Google Scholar 

  38. E. Littringer, A. Mescher, H. Schr­ttner, P. Walzel, A. Urbanetz Tailoring particle morphology of spray dried mannitol carrier particles by variation of the outlet temperature, ILASS 2010, 6th September - 8th September 2010, Brno, Tschechien, Proceedings Paper.

    Google Scholar 

  39. Maas, S. G., Schaldach, G., Littringer, E. M., Mescher, A., Griesser, U. J., Braun, D. E., et al. (2011). The impact of spray drying outlet temperature on the particle morphology of mannitol. Powder Technology, 213(1–3), 27–35. doi:10.1016/j.powtec.2011.06.024.

    Article  Google Scholar 

  40. Hsiang, L., & Faeth, G. M. (1992). Near-limit drop deformation and secondary breakup. International Journal of Multiphase Flow, 18, 635–652.

    Article  Google Scholar 

  41. Paschedag, A. R. (2004). CFD in der Verfahrenstechnik. Allgemeine Grundlagen und mehrphasige Anwendungen. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  42. Kistler, S., & Scriven, L. (1991). The teapot effect: Sheet-forming flows with deflection, wetting and hysteresis. Journal of Fluid Mechanics, 1995(263), 19–62.

    Google Scholar 

  43. Walzel, P. (2007). Vorrichtung zum Aufteilen von Flüssigkeiten in Rotationszerstäubern (DE 10 2007 047 411 A1). german pantent: http://www.google.com/patents/DE102007047411A1?cl=de.

    Google Scholar 

  44. Stephan G. Maas, Gerhard Schaldach, Peter Walzel, Nora A. Urbanetz, Manufacturing of Taylor Made Carrier Particles for Inhalation Therapy by Spray Drying, 11th International Conference on Liquid Atomization and Spray Systems (ICLASS) 2009 26th July - 30th July 2009, Vail, Colorado, USA, Proceedings Paper 173.

    Google Scholar 

  45. Littringer, E., Mescher, A., Schroettner, H., Achelis, L., Walzel, P., & Urbanetz, N. A. (2012). Spray dried mannitol carrier particles with tailored surface properties: The influence of carrier surface roughness and shape. European Journal of Pharmaceutics and Biopharmaceutics, 82(1), 194–204. doi:10.1016/j.ejpb.2012.05.001.

    Article  Google Scholar 

  46. Mönckedieck, M., Kamplade, J., Fakner, P., et al. (In Preparation). Spray drying of mannitol carrier particles with defined morphology and flow characteristics for dry powder inhalation. Powder Technology.

    Google Scholar 

  47. Mönckedieck, M., Kamplade, J., Fakner, P., et al. (In Preparation). DPI performance of spray dried mannitol with tailored surface morphologies. European Journal of Pharmaceutics and Biopharmaceutics.

    Google Scholar 

Download references

Acknowledgment

The authors express their gratitude to the DFG (Deutsche Forschungsgemeinschaft) for the financial support of our research within the SPP 1423 “Prozess–Spray.” Furthermore, the authors would like to thank a multitude of highly engaged students who participated with their theses and guaranteed for the success of the project. We also want to thank all our partners who generously and openly shared their data with our group. Last but not least, we also want to thank Prof. Dr.-Ing. U. Fritsching for his excellent coordination of the SPP “Process Spray.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Walzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Walzel, P., Mescher, A., Kamplade, J. (2016). Experimental Evaluation and Control of Interaction of Gas Environment and Rotary Atomized Spray for Production of Narrow Particle Size Distribution. In: Fritsching, U. (eds) Process-Spray. Springer, Cham. https://doi.org/10.1007/978-3-319-32370-1_22

Download citation

Publish with us

Policies and ethics