Skip to main content

Polymerization in Sprays: Atomization and Product Design of Reactive Polymer Solutions

  • Chapter
  • First Online:
Process-Spray

Abstract

The focus of this novel process is to polymerize a water-based solution in a spray with a conventional spray dryer to produce powder polymers. To achieve a successful process design, this project aims at the atomization of water-based polymer solutions, a novel device to measure reactivity and the design of a pre-reaction nozzle. To overcome the short residence time in a spray dryer a pre-reaction is necessary. It is done within the nozzle, which can be described as a combination of a laminar pipe reactor with a variable length and a twin-fluid nozzle in a lance shape in order to place it easily in a spray dryer. A model to optimize the progress of polymerization within the nozzle is based on kinetics from literature and a viscosity approach. That is made with the help of the novel measurement and the theory of rheokinetics. The increase of viscosity is dependent on the progress of chain growing and the conversion, respectively. A power law is presented to describe the viscosity with changing conversion at a constant initiator ratio. Another important aspect of optimizing the pre-reaction is the influence of the viscosity on the atomization. Investigations show the strong dependency of the molecular weight of the polymer on the drop formation because of its influence on the rheology of the solution. Sprays of different polymer water mixtures are measured by laser diffraction and a two parameter model, RRSB, is successfully used to describe the drop size distribution. The influence of the Sauter mean diameter \( {\overline{x}}_{1;2} \) is only able to be discussed if it is calculated by the RRSB fit. With increasing mass fractions of the high molecular weight polymer a turning point from drop to ligament formation is shown at low shear viscosity compared to lower molecular weight polymers. Finally a laboratory plant is presented that is producing polymer powders in one, but complex, process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Area of heat transfer in m2

A :

Pre-exponential factor in L/(mol · s) or s−1 or Pa · s

a :

Exponent of power function

b :

Exponent of power function

c :

Concentration in mol/L

\( {\tilde{c}}_{\mathrm{p}} \) :

Heat at capacity at constant pressure in J/(kg · K)

d :

Nozzle diameter in m

Da :

Damköhler number

E :

Specific energy in J/mol

f :

Initiator efficiency

h :

Heat transfer coefficient in W/(m2 · K)

\( {\Delta}_{\mathrm{r}}\tilde{H},\ {\Delta}_{\mathrm{v}}\tilde{H} \) :

Specific enthalpie of reaction (r) or evaporation (v) in J/kg

i :

Variable

K :

Empirical constant of viscous flow in Pa · s

k :

Reaction constants in L/(mol · s) or s−1

k c :

Mass transfer coefficient in m/s

L :

Length of nozzle in m

\( \left(\overline{M}\right)\ M \) :

(Mean) molecular mass in g/mol

n :

Exponent of size distribution

Oh :

Ohnesorge number

p :

Pressure in Pa

Q :

Cumulative size distribution

q :

Differential size distribution in m−1

R :

Rate of polymerization in mol/(L · s)

\( \overline{R} \) :

Universal gas constant in J/mol/K

\( {\overline{R}}^2 \) :

Adjusted coefficient of regression

r :

Radius of inner pipe in m

T :

Temperature in K

t :

Time in s

U :

Overall heat transfer coefficient in W/(m2 · K)

w :

Mass fraction in %

X :

Conversion

x :

Particle/drop size

\( {\overline{x}}_{1;2}\kern0.5em \mathrm{or}\kern0.5em {x}_{1;2} \) :

Sauter mean diameter (SMD) in μm3/μm2

z :

Length in m

α :

Pre-exponential factor

β :

Pre-exponential factor

η :

Viscosity in Pa · s

η*:

Complex viscosity in Pa · s

[η]:

Intrinsic viscosity in L/mol

ϑ :

Dimensionless temperature

μ :

Mean value

μ p :

Liquid load

ρ :

Density in g/L

σ 2 :

Variance

τ :

Induction time in s

0:

Initial condition

AA:

Acrylic acid

ad:

Adiabatic

d:

Decomposition

H2O:

Water

I:

Initiator

i:

Initiation

inter:

Intersection

M:

Monomer

m :

Mass

p:

Propagation

poly:

Polymer

r:

Reaction

s:

Solution

spec:

Specific

t:

Termination

W:

Wall

η :

Viscous

τ :

Induction period

References

  1. Bühler, V. (2005). Polyvinylpyrrolidone excipients for pharmaceuticals Povidone, Crospovidone and Copovidone. Berlin: Springer. ISBN 3-540-23412-8.

    Google Scholar 

  2. Glavis, F. J., Downing, D. G., & Grotta, H. M. (1958). Verfahren zur Polymerisation und Mischpolymerisation von Acrylsäuresalzen. German Patent 1040790.

    Google Scholar 

  3. Freeman, C. S., Freeman, M. M., & Freeman, J. J. (2002). Water absorbing polymer. US Patent US 6,399,730 B1.

    Google Scholar 

  4. Binsbergen, F. L., Bos, A. N. R., & Santen, A. (1996). Process for preparing styrene polymers. US Patent US 5,587,438.

    Google Scholar 

  5. Norwood, D. D. (1967). Bulk polymerization of conjugated diolefins. US Patent US 3,350,377.

    Google Scholar 

  6. Sasaki, I., Mori, H., & Fujimoto, M. (1987). Process for the production of polyester. US Patent US 4,647,650.

    Google Scholar 

  7. Schmid, M., Seidl, V., Distler, D., Hähnle, H.-J., Lösch, D., Moritz, H.-U., et al. (2004). Spray polymerisation method. EU Patent EP 1,660,540 (B1).

    Google Scholar 

  8. Krüger, M. (2003). Sprühpolymerisation: Aufbau und Untersuchung von Modellverfahren zur kontinuierlichen Gleichstrom-Sprühpolymerisation. PhD thesis, University of Hamburg, Germany.

    Google Scholar 

  9. Hirleman, D. E. (1983). On-line calibration technique for laser diffraction droplet sizing instruments (ASME paper 83-GT-232).

    Google Scholar 

  10. Bhatia, J. C., Domnick, J., Durst, F., & Tropea, C. (1988). Phase-doppler-anemometry and the log-hyperbolic distribution applied to liquid sprays. Particle and Particle Systems Characterization, 5, 153–164.

    Article  Google Scholar 

  11. Walzel, P. (1990). Zerstäuben von Flüssigkeiten. Chemie Ingenieur Technik, 62, 983–994.

    Article  Google Scholar 

  12. Leschonski, K., Alex, W., & Koglin, B. (1974). Teilchengrößenanalyse. 1. Darstellung und Auswertung von Teilchengrößenverteilungen (Fortsetzung). Chemie Ingenieur Technik,46, 101–106.

    Google Scholar 

  13. Hede, P. D., Bach, P., & Jensen, A. D. (2008). Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review. Chemical Engineering Science, 63, 3821–3842.

    Article  Google Scholar 

  14. Paloposki, T. (1994). Drop size distributions in liquid sprays. PhD thesis, University of Helsinki, Finland.

    Google Scholar 

  15. Aliseda, A., Hopfinger, E. J., Lasheras, J. C., Kremer, D. M., Berchielli, A., & Connolly, E. K. (2008). Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling. International Journal of Multiphase Flow, 34, 161–175.

    Article  Google Scholar 

  16. Varga, C. M., Lasheras, J. C., & Hopfinger, E. J. (2003). Initial breakup of a small-diameter liquid jet by a high-speed gas stream. Journal of Fluid Mechanics, 497, 405–434.

    Article  Google Scholar 

  17. Christanti, Y., & Walker, L. M. (2001). Surface tension driven jet break up of strain-hardening polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 100, 9–26.

    Article  Google Scholar 

  18. Mun, R. P., Byars, J. A., & Boger, D. V. (1998). The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets. Journal of Non-Newtonian Fluid Mechanics, 74, 285–297.

    Article  Google Scholar 

  19. Li, J., & Fontelos, M. A. (2003). Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study. Physics of Fluids, 15, 922–937.

    Article  Google Scholar 

  20. Yıldırım, Ö. E., & Basaran, O. A. (2006). Dynamics of formation and dripping of drops of deformation-rate-thinning and -thickening liquids from capillary tubes. Journal of Non-Newtonian Fluid Mechanics, 136, 17–37.

    Article  Google Scholar 

  21. Smith, D. E., Babcock, H. P., & Chu, S. (1999). Single-polymer dynamics in steady shear flow. Science, 283, 1724–1727.

    Article  Google Scholar 

  22. Kim, K. Y., & Marshall, W. R. (1971). Drop-size distributions from pneumatic atomizers. AICHE Journal, 17, 575–584.

    Article  Google Scholar 

  23. Wagner, C., Amarouchene, Y., Bonn, D., & Eggers, J. (2005). Droplet detachment and satellite bead formation in viscoelastic fluids. Physical Review Letters, 95, 164504.

    Article  Google Scholar 

  24. Anderson, C. C., Rodriguez, F., & Thurston, D. A. (1979). Crosslinking aqueous poly(vinyl pyrrolidone) solutions by persulfate. Journal of Applied Polymer Science, 23, 2453–2462.

    Article  Google Scholar 

  25. Tenhu, H., Sundholm, F., & Bjorksten, J. (1984). Studies of crosslinked poly(N-vinyl-2-pyrrolidone) by calorimetry and by NMR. Makromolekulare Chemie, 185, 2011–2019.

    Article  Google Scholar 

  26. BASF SE: PVP and more … Luvitec, Luvicross. 2009. online 2015-08-31. http://www.spp-prozess-spray.uni-bremen.de/spp_1423-Dateien/PVP_techn.pdf

  27. Wittenberg, N. F. G. (2013). Kinetics and modeling of the radical polymerization of acrylic acid and of methacrylic acid in aqueous solution. PhD thesis, University of Göttingen, Germany.

    Google Scholar 

  28. Scott, R. A., & Peppas, N. A. (1997). Kinetic study of acrylic acid solution polymerization. AICHE Journal, 43, 135–144.

    Article  Google Scholar 

  29. Matyjaszewski, K., & Davis, T. P. (2002). Handbook of radical polymerization. Hoboken: Wiley-Interscience. ISBN 978-0-471-39274-3.

    Book  Google Scholar 

  30. Costa, C., Santos, V. H. S., Araujo, P. H. H., Sayer, C., Santos, A. F., Dariva, C., et al. (2010). Rapid decomposition of a cationic azo-initiator under microwave irradiation. Journal of Applied Polymer Science, 118, 1421–1429.

    Article  Google Scholar 

  31. Dougherty, T. J. (1961). Chemistry of 2,2-azobisisobutyramidine hydrochloride in aqueous solution: A water-soluble azo initiator. Journal of the American Chemical Society, 83, 4849–4853.

    Article  Google Scholar 

  32. Hammond, G. S., & Neuman, R. C. (1963). The mechanism of decomposition of azo compounds. III. Cage effects with positively charged geminate radical pairs. Journal of the American Chemical Society, 85, 1501–1508.

    Article  Google Scholar 

  33. Werber, J., Wang, Y. J., Milligan, M., Li, X., & Ji, J. A. (2011). Analysis of 2,2′-azobis (2-amidinopropane) dihydrochloride degradation and hydrolysis in aqueous solutions. Journal of Pharmaceutical Sciences, 100, 3307–3315.

    Article  Google Scholar 

  34. Lacík, I., Beuermann, S., & Buback, M. (2003). PLP-SEC study into free-radical propagation rate of nonionized acrylic acid in aqueous solution. Macromolecules, 36, 9355–9363.

    Article  Google Scholar 

  35. Barth, J., Meiser, W., & Buback, M. (2012). SP-PLP-EPR study into termination and transfer kinetics of non-ionized acrylic acid polymerized in aqueous solution. Macromolecules, 45, 1339–1345.

    Article  Google Scholar 

  36. Hess, K., & Sakurada, I. (1931). Zur Kenntnis der Staudingerschen Beziehung zwischen Viskosität und Molekulargewicht bei Cellulose-Präparaten. Berichte der Deutschen Chemischen Gesellschaft, 64, 1183–1192.

    Article  Google Scholar 

  37. Houwink, R. (1940). Zusammenhang zwischen viscosimetrisch und osmotisch bestimmten Polymerisationsgraden bei Hochpolymeren. Journal für Praktische Chemie, 157, 15–18.

    Article  Google Scholar 

  38. Huggins, M. L. (1939). The viscosity of dilute solutions of long‐chain molecules. III. The Staudinger viscosity law. Journal of Applied Physics, 10, 700–704.

    Article  Google Scholar 

  39. Staudinger, H. (1930). Ueber hochpolymere Verbindungen. Kolloid-Zeitschrift, 51, 71–89.

    Article  Google Scholar 

  40. Fikentscher, H., & Mark, H. (1929). Ueber die Viskosität lyophiler Kolloide. Kolloid-Zeitschrift, 49, 135–148.

    Article  Google Scholar 

  41. Malkin, A. Y. (1980). Rheology in polymerization processes. Polymer Engineering and Science, 20, 1035–1044.

    Article  Google Scholar 

  42. Kulichikhin, S. G., Malkin, A. Y., Polushkina, O. M., & Kulichikhin, V. G. (1997). Rheokinetics of free-radical polymerization of acrylamide in an aqueous solution. Polymer Engineering and Science, 37, 1331–1338.

    Article  Google Scholar 

  43. Chevrel, M.-C., Brun, N., Hoppe, S., Meimaroglou, D., Falk, L., Chapron, D., et al. (2014). In situ monitoring of acrylic acid polymerization in aqueous solution using rheo-Raman technique. Experimental investigation and theoretical modelling. Chemical Engineering Science, 106, 242–252.

    Article  Google Scholar 

  44. Andrade, E. N. D. C. (1930). The viscosity of liquids. Nature, 125, 309–310.

    Article  Google Scholar 

  45. Becker, H. (2003). Polymerisationsinhibierung von (Meth-) Acrylaten. PhD dissertation, Darmstadt, Germany.

    Google Scholar 

  46. Brand, R. H. (2011). Reaktionstechnische Studien zum Einfluss von Wasser auf die Stabilität von Acrylsäure. PhD dissertation, Darmstadt, Germany.

    Google Scholar 

  47. Schulze, S., & Vogel, H. (1998). Aspects of the safe storage of acrylic monomers: Kinetics of the oxygen consumption. Chemical Engineering and Technology, 21, 829–837.

    Article  Google Scholar 

  48. Schulz, V. G. V., & Henrici, G. (1956). Reaktionskinetik der Polymerisationshemmung durch molekularen Sauerstoff. Makromolekulare Chemie, 18, 437–454.

    Article  Google Scholar 

  49. Kale, L. T., & O’Driscoll, K. F. (1982). Rheokinetics of polymerization of n-laurylmethacrylate. Polymer Engineering and Science, 22, 402–409.

    Article  Google Scholar 

  50. Gorry, P. A. (1990). General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Analytical Chemistry, 62, 570–573.

    Article  Google Scholar 

  51. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.

    Article  Google Scholar 

  52. Ito, H., Shimizu, S., & Suzuki, S. (1955). Aqueous polymerization of acrylic acid and effect of pH. The Journal of the Society of Chemical Industry, Japan , 58, 194–196.

    Google Scholar 

  53. Blauer, G. (1953). Rate of polymerization of methacrylic acid in alkaline solution. Journal of Polymer Science, 11, 189–192.

    Article  Google Scholar 

  54. Olson, J. D., Morrison, R. E., & Wilson, L..C. (2008). Thermodynamics of hydrogen-bonding mixtures. 5. GE, HE, and TSE and zeotropy of water+acrylic acid. Industrial and Engineering Chemistry Research, 47, 5127–5131.

    Google Scholar 

  55. Säckel, W., & Nieken, U. (2013). Modelling of spray polymerisation processes. Macromolecular Symposia, 333, 297–304.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the German research foundation for the financial support and the BASF SE for donating materials.

A great thanks to all the co-workers within the SPP, especially to the group of Prof. Nieken and Prof. Moritz from Stuttgart and Hamburg because of the discussion to polymerization in sprays, to the group of Prof. Sommerfeld because of the arrangement of the high-speed camera and to the group of Prof. Windhab because of the discussion on the complex rheology of polymer solutions.

Finally we would like to thank our students, especially Mr. Bergmann, who worked on rheokinetics, Mr. Gärtner for giving a detailed look to rheokinetics and performing stop tests and Mr. Ostmann, who developed the optical measurement to quantify the mixing within the nozzle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Alexander Peuker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tewes, M., Peuker, U.A. (2016). Polymerization in Sprays: Atomization and Product Design of Reactive Polymer Solutions. In: Fritsching, U. (eds) Process-Spray. Springer, Cham. https://doi.org/10.1007/978-3-319-32370-1_20

Download citation

Publish with us

Policies and ethics