Skip to main content

Banach Spaces and Banach Lattices

  • Chapter
  • First Online:
Banach Spaces of Continuous Functions as Dual Spaces

Part of the book series: CMS Books in Mathematics ((CMSBM))

  • 1215 Accesses

Abstract

We shall now give some background in the theory of normed and Banach spaces, including the key definitions of dual and bidual spaces and of an isomorphism and an isometric isomorphism between two normed spaces. In particular, we shall show how certain bidual spaces can be embedded in other Banach spaces. In \(\S\) 2.3, we shall also recall some basic results and theorems concerning Banach lattices. We shall define complemented subspaces of a Banach space in \(\S\) 2.4, and also we shall discuss, in \(\S\) 2.5, the projective and injective objects in the category of Banach spaces and bounded operators. We shall conclude the chapter by discussing dentability and the Krein–Milman property for Banach spaces in \(\S\) 2.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An immediate contradiction can be obtained at this point by an appeal to a lemma of Rosenthal (see [131, Proposition 7.21]); we provide a somewhat simpler, self-contained argument here.

References

  1. Y. A. Abramovich, C. D. Aliprantis, in An Invitation to Operator Theory. Graduate Studies in Mathematics, vol. 50 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  2. F. Albiac, N. J. Kalton, Topics in Banach Space Theory. Graduate Texts in Mathematics, vol. 233 (Springer, New York, 2006)

    Google Scholar 

  3. C. D. Aliprantis, O. Burkinshaw, Positive Operators, 2nd printing (with revised section numbers, page numbers, and references) (Springer, Dordrecht, 2006)

    Google Scholar 

  4. G. R. Allan, Introduction to Banach Spaces and Algebras. Oxford Graduate Texts in Mathematics, vol. 20 (Oxford University Press, Oxford, 2011)

    Google Scholar 

  5. S. A. Argyros, J. F. Castillo, A. S. Granero, M. Jiménez, J. Moreno, Complementation and embeddings of c 0(I) in Banach spaces. Proc. London Math. Soc. 85 (3), 742–768 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Avilés, F. Cabello Sánchez, J. M. F. Castillo, M. González, Y. Moreno, On separably injective Banach spaces. Advances Math. 234, 192–216 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Avilés, F. Cabello Sánchez, J. M. F. Castillo, M. Gonzáles, Y. Moreno, Separably Injective Banach Spaces. Lecture Notes in Mathematics, vol. 2132 (Springer, Berlin, 2016)

    Google Scholar 

  8. W. G. Bade, The Space of all Continuous Functions on a Compact Hausdorff Space (University of California, Berkeley, 1957). Library call no. QA689.B16

    Google Scholar 

  9. W. G. Bade, The Banach Space C(S). Lecture Note Series, vol. 26 (Matematisk Institut, Aarhus Universitët, Aarhus, 1971)

    Google Scholar 

  10. S. Banach, Théorie des Opérations Linéaires. Monografie Matematyczne, vol. 1 (Instytut Matematyczny Polskiej Akademii Nauk, Warsaw, 1932)

    Google Scholar 

  11. Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, vol. 48 (American Mathematical Society Colloquium Publications, Providence, 2000)

    MATH  Google Scholar 

  12. C. Bessaga, A. Pełczyński, On extreme points in separable conjugate spaces. Israel J. Math. 4, 262–264 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Bishop, R. R. Phelps, A proof that every Banach space is subreflexive. Bull. American Math. Soc. 67, 97–98 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Bollobás, An extension to the theorem of Bishop and Phelps. Bull. London Math. Soc. 2, 181–182 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bourgain, Real isomorphic complex Banach spaces need not be complex isomorphic. Proc. American Math. Soc. 96, 221–226 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Brech, P. Koszmider, On universal Banach spaces of density continuum. Israel J. Math. 190, 93–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Brech, P. Koszmider, -sums and the Banach space c 0 . Fund. Math. 224, 175–185 (2014)

    Google Scholar 

  18. F. C. Sánchez, J. M. F. Castillo, D. Yost, Sobczyk’s theorems from A to B. Extracta Math. 15, 391–420 (2000)

    Google Scholar 

  19. M. Cambern, P. Greim, Uniqueness of preduals for spaces of continuous vector functions. Canadian Math. Bull. 31, 98–104 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Choquet, Existence et unicite des representations integrales au moyen des points extremaux dans les cones convexes. Seminaire Bourbaki 139, 1–15 (1956)

    MATH  Google Scholar 

  21. J. B. Conway, Projections and retractions. Proc. American Math. Soc. 17, 843–847 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. G. Dales, Banach Algebras and Automatic Continuity. London Mathematical Society Monographs, vol. 24 (Clarendon Press, Oxford, 2000)

    Google Scholar 

  23. H. G. Dales, M. E. Polyakov, Multi-normed spaces. Diss. Math. (Rozprawy Matematyczne) 488, 165 (2012)

    Google Scholar 

  24. W. J. Davis, W. B. Johnson, A renorming of nonreflexive Banach spaces. Proc. American Math. Soc. 37, 486–488 (1973)

    Google Scholar 

  25. M. M. Day, Normed Linear Spaces (Springer, New York, 1973)

    Book  MATH  Google Scholar 

  26. J. Diestel, Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, vol. 92 (Springer, New York, 1984)

    Google Scholar 

  27. J. Diestel, J. J. Uhl Jr., Vector Measures. Mathematical Surveys, vol. 15 (American Mathematical Society, Providence, 1977)

    Google Scholar 

  28. J. Dixmier, Sur certains espaces considérés par M. H. Stone. Summa Brasiliensis Math. 2, 151–182 (1951)

    MathSciNet  MATH  Google Scholar 

  29. L. Drewnowski, J. W. Roberts, On the primariness of the Banach space c 0. Proc. American Math. Soc. 112, 949–957 (1991)

    MathSciNet  MATH  Google Scholar 

  30. N. Dunford, J. T. Schwartz, Linear Operators, Part I: General Theory (Interscience Publishers, New York, 1957)

    MATH  Google Scholar 

  31. R. Engelking, General Topology. Monografie Matematyczne, vol. 60 (Polish Scientific Publishers, Warsaw, 1977). Revised and completed edition (Heldermann Verlag, Berlin, 1989)

    Google Scholar 

  32. M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach Space Theory. Canadian Mathematical Society Books in Mathematics (Springer, New York, 2011)

    Google Scholar 

  33. V. P. Fonf, J. Lindenstrauss, R. R. Phelps, Infinite dimensional convexity, in Handbook of the Geometry of Banach Spaces, vol. 1, ed. by W. B. Johnson, J. Lindenstrauss (North Holland/Elsevier, Amsterdam, 2001), pp. 599–670

    Chapter  Google Scholar 

  34. G. Godefroy, Existence and uniqueness of isometric preduals: a survey, in Banach Space Theory, ed. by B.-L. Lin. Contemporary Mathematics, vol. 85 (American Mathematical Society, Providence, 1987), pp. 131–194

    Google Scholar 

  35. F. P. Greenleaf, Invariant Means on Topological Groups. van Nostrand Mathematical Studies, vol. 16 (van Nostrand, New York, 1969)

    Google Scholar 

  36. A. Grothendieck, Sur les appplications lineaires faiblement compactes d’espaces du type C(K). Canadian J. Math. 5, 129–173 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Grothendieck, Une caractérisation vectorielle métrique des espaces L 1. Canadian Math. Bull. 7, 552–561 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Hájek, V. M. Santalucía, J. Vanderwerff, V. Zizler, Biorthogonal Systems in Banach Spaces. Canadian Mathematical Society Books in Mathematics (Springer, New York, 2008)

    Google Scholar 

  39. J. Isbell, Z. Semadeni, Projection constants and spaces of continuous functions. Trans. American Math. Soc. 107, 38–48 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Jarchow, Locally Convex Spaces (B. G. Teubner, Stuttgart, 1981)

    Book  MATH  Google Scholar 

  41. W. B. Johnson, J. Lindenstrauss (ed.), Handbook of the Geometry of Banach Spaces, vols. 1 and 2 (North Holland/Elsevier, Amsterdam, 2001)

    Google Scholar 

  42. W. B. Johnson, J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, in Handbook of the Geometry of Banach Spaces, vol. 1, ed. by W. B. Johnson, J. Lindenstrauss (North Holland/Elsevier, Amsterdam, 2001), pp. 1–84

    Chapter  Google Scholar 

  43. N. J. Kalton, An elementary example of a Banach space not isomorphic to its complex conjugate. Canadian Math. Bull. 38, 218–222 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Köthe, Hebbare lokalkonvexe Räume. Math. Annalen 165, 181–195 (1966)

    Article  MATH  Google Scholar 

  45. H. E. Lacey, Isometric Theory of Classical Banach Spaces (Springer, Berlin, 1974)

    Book  MATH  Google Scholar 

  46. J. Lindenstrauss, Extensions of compact operators. Mem. American Math. Soc. 48, 112 (1964)

    MathSciNet  MATH  Google Scholar 

  47. J. Lindenstrauss, H. P. Rosenthal, The \(\mathcal{L}_{p}\) spaces. Israel J. Math. 7, 325–349 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Lindenstrauss, L. Tzafriri, On the complemented subspaces problem. Israel J. Math. 9, 263–269 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. Lecture Notes in Mathematics, vol. 338 (Springer, Berlin, 1973).

    Google Scholar 

  50. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, vol. I (Springer, Berlin, 1977)

    Book  MATH  Google Scholar 

  51. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, vol. II (Springer, Berlin, 1979)

    Book  MATH  Google Scholar 

  52. W. A. J. Luxemburg, A. C. Zaanan, Riesz Spaces, vol. I (North Holland, Amsterdam, 1971)

    Google Scholar 

  53. R. E. Megginson, An Introduction to Banach Space Theory. Graduate Texts in Mathematics, vol. 183 (Springer, New York, 1998)

    Google Scholar 

  54. P. Meyer-Nieberg, Banach Lattices (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  55. G. A. Muñoz, Y. Sarantopoulos, A. Tonge, Complexifications of real Banach spaces, polynomials and multilinear maps. Studia Math. 134, 1–33 (1999)

    MathSciNet  MATH  Google Scholar 

  56. I. Namioka, Neighborhoods of extreme points. Israel J. Math. 5, 145–152 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  57. I. Namioka, E. Asplund, A geometric proof of Ryll–Nardzewski’s fixed point theorem. Bull. American Math. Soc. 73, 443–445 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Pełczyński, On the isomorphism of the spaces m and M. Bull. Acad. Pol. Sci. 6, 695–696 (1958)

    Google Scholar 

  59. R. Phelps, Lectures on Choquet’s Theorem. van Nostrand Mathematical Studies, vol. 7 (van Nostrand, Princeton, 1966). Second edition, Lecture Notes in Mathematics, vol. 1757 (Springer, Berlin, 2001)

    Google Scholar 

  60. R. S. Phillips, On linear transformations. Trans. American Math. Soc. 48, 516–541 (1940)

    Article  MATH  Google Scholar 

  61. M. A. Rieffel, Dentable subsets of Banach spaces, with applications to a Radon–Nikodým theorem, in Functional Analysis Proceedings of a Conference held at the University of California, Irvine, 1965, ed. by B. R. Gelbaum (Academic, London, 1967), pp. 71–77

    Google Scholar 

  62. H. P. Rosenthal, On injective Banach spaces and the spaces L (μ) for finite measures μ. Acta Math. 124, 205–248 (1970)

    Google Scholar 

  63. H. P. Rosenthal, The complete separable extension property. J. Operator Theory 43, 329–374 (2000)

    MathSciNet  MATH  Google Scholar 

  64. W. Rudin, Functional Analysis, 2nd edn. (McGraw-Hill, New York, 1991)

    MATH  Google Scholar 

  65. H. H. Schaefer, Banach Lattices and Positive Operators (Springer, Berlin, 1974)

    Book  MATH  Google Scholar 

  66. G. L. Seever, Measures on F-spaces. Trans. American Math. Soc. 133, 267–280 (1968)

    MathSciNet  MATH  Google Scholar 

  67. Z. Semadeni, Banach Spaces of Continuous Functions. Monografie Matematyczne, vol. 55 (Instytut Matematyczny Polskiej Akademii Nauk, Warsaw, 1971)

    Google Scholar 

  68. S. Shelah, A. Usvyatsov, Banach spaces and groups—order properties and universal models. Israel J. Math. 152, 245–270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  69. C. Stegall, The Radon–Nikodým property in conjugate Banach spaces. Trans. American Math. Soc. 206, 213–223 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  70. W. A. Veech, Short proof of Sobczyk’s theorem. Proc. American Math. Soc. 28, 627–628 (1971)

    MathSciNet  MATH  Google Scholar 

  71. R. C. Walker, The Stone–Čech Compactification (Springer, Berlin, 1974)

    Book  MATH  Google Scholar 

  72. R. Whitley, Projecting m onto c  0. American Math. Mon. 73, 285–286 (1966)

    Google Scholar 

  73. A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces (Springer, Berlin, 1997)

    Book  MATH  Google Scholar 

  74. M. Zippin, The separable extension problem. Israel J. Math. 26, 372–387 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  75. M. Zippin, Extension of bounded linear operators, in Handbook of the Geometry of Banach Spaces, vol. 2, ed. by W. B. Johnson, J. Lindenstrauss (North-Holland, Amsterdam, 2003), pp. 1703–1741

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dales, H.G., Dashiell, F.K., Lau, A.TM., Strauss, D. (2016). Banach Spaces and Banach Lattices. In: Banach Spaces of Continuous Functions as Dual Spaces. CMS Books in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-32349-7_2

Download citation

Publish with us

Policies and ethics