Skip to main content

Model-Based Control Design for Comfort Enhancement During Drive Off Maneuvers

  • Conference paper
  • First Online:

Abstract

Model-based control provides a high potential to reduce costs of testing and application in vehicle software development as well as an improvement of control quality. In this paper a physical model for drive off behavior of vehicles with manual transmission is presented. The model includes wheel and vehicle longitudinal dynamics along with clutch and powertrain behavior. The declared parameters are identified using a combination of evolutionary and deterministic optimization algorithms. Based on the model two algorithms for engine torque control are designed to enhance driving comfort during drive off maneuvers. On the one hand the driver gets assistance with regard to comfort and constant acceleration and on the other hand unpleasant oscillations are prevented. Both strategies show good results in vehicle tests under real-life conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Engel, D., Meywerk, M., Wojke, B.: Self-excited full-vehicle oscillations in dynamic packaging examination. ATZ Worldw. 111(5), 52–57 (2009)

    Google Scholar 

  2. Brandhoff, H., Pfau, W., Tögel, F.-J.: Extrembelastungen im Pkw-Antriebsstrang durch Missbrauch. ATZ Automobiltechnische Z. 101(12), 1006–1015 (1999)

    Article  Google Scholar 

  3. Fan, J., Hierlwimmer, P., Berthold, B., et al.: Analyse des Systemeinflusses auf die Spitzenbelastung im Pkw-Handschaltgetriebe. ATZ Automobiltechnische Z. 101(10), 812–819 (1999)

    Article  Google Scholar 

  4. Thorausch, M., Kirchner, E., Scheuermann, M., et al.: Assessment method for passenger car transmissions under abusive loads. ATZ Worldw. 111(1), 40–46 (2009)

    Google Scholar 

  5. Eicke, S., Zemke, S., Trabelsi, A., Dagen, M., Ortmaier, T.: Experimental investigation of power hop in passenger cars. SAE, Technical Paper 2015-01-2185 (2015)

    Google Scholar 

  6. Pacejka, H.: Tire and Vehicle Dynamics, 3rd edn. Elsevier Ltd., Oxford (2012)

    Google Scholar 

  7. Wohnhaas, A., Hötzer, D., Sailer, U.: Modulares Simulationsmodell eines Kfz-Antriebsstrangs unter Berücksichtigung von Nichtlinearitäten und Kupplungsvorgängen. VDI Berichte Nr. 1220 (1995)

    Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  9. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  10. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

    Google Scholar 

  11. Behrendt, H., Ortmaier, T., Trabelsi, A., Zemke, S.: Analyse und modellbasierte Regelung von KFZ-Antriebsstrangschwingungen. Simulation und Test für die Automobilelektronik III, pp. 145–161. Expert Verlag, Renningen (2010)

    Google Scholar 

  12. Scales, L.E.: Introduction to Non-Linear Optimization. Macmillan Publishers LTD, London (1985)

    Google Scholar 

  13. Nelles, O.: Nonlinear System Identification. Springer, Berlin (2001)

    Google Scholar 

  14. Albers, A., Herbst, D.: Rupfen – Ursachen und Abhilfen. 6. LuK Kolloquium, LuK GmbH & Co. KG (1998)

    Google Scholar 

  15. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer, Berlin (2014)

    Google Scholar 

  16. de Castro, R., Araujo, R.E., Diamantino., F.: Wheel slip control of EVs based on sliding mode technique with conditional integrators. IEEE Trans. Indus. Electron. 60(8) (2013)

    Google Scholar 

  17. Kember, S., Powell, N., Poggi, M., Ellis, D., Sung, J.: Modelling of snap start behaviour in an automotive driveline. MSC software support library (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Eicke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Eicke, S., Zemke, S., Trabelsi, A., Dagen, M., Ortmaier, T. (2016). Model-Based Control Design for Comfort Enhancement During Drive Off Maneuvers. In: Gühmann, C., Riese, J., von Rüden, K. (eds) Simulation and Testing for Vehicle Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32345-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32345-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32344-2

  • Online ISBN: 978-3-319-32345-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics