Skip to main content

The Peripheral Immune Response to Stroke

  • Chapter
  • First Online:
Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Historically, the central nervous system (CNS) has been viewed as a place with limited immune surveillance and capacity to mount immune responses. This has led to attribute “immunological privilege” to the CNS, a term first coined by Billingham and Boswell [1]. Already in the nineteenth century the Dutch ophthalmologist van Dooremaal [2] described the phenomenon of immune privilege by demonstrating the long-term survival of mouse skin grafts placed in the anterior chamber of a dog’s eye. However, within the brain, immune privilege does not apply to all structures. Murphy and Sturm [3] observed that allogeneic tumor transplants were readily rejected when they came in contact with the cerebral ventricles while transplants that were embedded within the brain parenchyma did not elicit an immune response and showed prolonged survival times. These studies were later extended by Medawar [4] to show that allogeneic skin grafts transplanted into the anterior chamber of the eye or the brain of rabbits were efficiently rejected when the host was previously immunized with donor-derived cells and that this rejection was dependent on vascularization of the graft. The resistance of the CNS to mount an effective immune response also extends to the innate immune system. Bacterial endotoxin injected into the brain parenchyma triggers less inflammatory response as measured by immune cell infiltration, than injection of the same endotoxin dose into the skin [5]. Similar to observations with the adaptive immune response, the reduction in endotoxin-mediated inflammation was not found when endotoxin was injected into the ventricles. These studies collectively suggest that the CNS is not immune privileged per se, but there are mechanisms in place to suppress both the innate and adaptive immune responses. These include the blood–brain barrier (BBB) and the glia limitans, which minimize the exchange of potentially antigenic macromolecules and pro-inflammatory mediators (e.g., cytokines, chemokines, DAMP) and pose a barrier for easy immune cell entry from the circulation. In addition, the brain features a generally anti-inflammatory milieu under homeostatic conditions sustained by the expression by highly immunosuppressive cytokines such as transforming growth factor-β (TGF-β) and insulin-like growth factor-1 (IGF-1). Once these structural and molecular barriers are removed, as it is the case during ischemic brain injury, inflammation can proceed “as planned” and contribute to the outcome of stroke. This chapter will briefly discuss immune cells participating in the response to cerebral ischemia, deliberate potential entry points of these cells to gain access to the ischemic tissue, and outline the role of the ischemic brain in shaping the peripheral immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billingham RE, Boswell T. Studies on the problem of corneal homografts. Proc R Soc Lond B Biol Sci. 1953;141:392–406.

    Article  CAS  PubMed  Google Scholar 

  2. Van Dooremaal JC. De ontwikkeling van levende veefsels op vreemden boden geent. Onderz physiol Lab Rijksuniv Utrechsche Loogeschool. 1873;3:277.

    Google Scholar 

  3. Murphy JB, Sturm E. Conditions determining the transplantability of tissues in the brain. J Exp Med. 1923;38:183–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol. 1948;29:58–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Andersson PB, Perry VH, Gordon S. The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. NSC. 1992;48:169–86.

    CAS  Google Scholar 

  6. Goldmann T, Wieghofer P, Müller PF, Wolf Y, Varol D, Yona S, Brendecke SM, Kierdorf K, Staszewski O, Datta M, Luedde T, Heikenwalder M, Jung S, Prinz M. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci. 2013;16:1618–26.

    Article  CAS  PubMed  Google Scholar 

  7. Rupalla K, Allegrini PR, Sauer D, Wiessner C. Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol (Berl). 1998;96:172–8.

    Article  CAS  Google Scholar 

  8. Fumagalli S, Perego C, Ortolano F, De Simoni M-G. CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia. 2013;61:827–42.

    Article  PubMed  Google Scholar 

  9. Morrison HW, Filosa JA. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation. 2013;10:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol. 2003;183:25–33.

    Article  PubMed  Google Scholar 

  11. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci. 2007;27:2596–605.

    Article  CAS  PubMed  Google Scholar 

  12. Denes A, Ferenczi S, Halász J, Környei Z, Kovács KJ. Role of CX3CR1 (fractalkine receptor) in brain damage and inflammation induced by focal cerebral ischemia in mouse. J Cereb Blood Flow Metab. 2008;28:1707–21.

    Article  CAS  PubMed  Google Scholar 

  13. Schilling M, Strecker J-K, Ringelstein EB, Kiefer R, Schäbitz W-R. Turn-over of meningeal and perivascular macrophages in the brain of MCP-1-, CCR-2- or double knockout mice. Exp Neurol. 2009;219:583–5.

    Article  CAS  PubMed  Google Scholar 

  14. Schilling M, Strecker J-K, Ringelstein EB, Schäbitz W-R, Kiefer R. The role of CC chemokine receptor 2 on microglia activation and blood-borne cell recruitment after transient focal cerebral ischemia in mice. Brain Res. 2009;1289:79–84.

    Article  CAS  PubMed  Google Scholar 

  15. Urra X, Villamor N, Amaro S, Gómez-Choco M, Obach V, Oleaga L, Planas AM, Chamorro A. Monocyte subtypes predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab. 2009;29:994–1002.

    Article  CAS  PubMed  Google Scholar 

  16. Kaito M, Araya S-I, Gondo Y, Fujita M, Minato N, Nakanishi M, Matsui M. Relevance of distinct monocyte subsets to clinical course of ischemic stroke patients. PLoS One. 2013;8, e69409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gliem M, Mausberg AK, Lee J-I, Simiantonakis I, van Rooijen N, Hartung H-P, Jander S. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol. 2012;71:743–52.

    Article  CAS  PubMed  Google Scholar 

  18. Arumugam TV, Salter JW, Chidlow JH, Ballantyne CM, Kevil CG, Granger DN. Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. Am J Physiol Heart Circ Physiol. 2004;287:H2555–60.

    Article  CAS  PubMed  Google Scholar 

  19. Becker KJ. Activation of immune responses to brain antigens after stroke. J Neurochem. 2012;123 Suppl 2:148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prestigiacomo CJ, Kim SC, Connolly ES, Liao H, Yan SF, Pinsky DJ. CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke. Stroke. 1999;30:1110–7.

    Article  CAS  PubMed  Google Scholar 

  21. Relton JK, Sloan KE, Frew EM, Whalley ET, Adams SP, Lobb RR. Inhibition of alpha4 integrin protects against transient focal cerebral ischemia in normotensive and hypertensive rats. Stroke. 2001;32:199–205.

    Article  CAS  PubMed  Google Scholar 

  22. Campanella M, Sciorati C, Tarozzo G, Beltramo M. Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke. 2002;33:586–92.

    Article  PubMed  Google Scholar 

  23. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43:3063–70.

    Article  CAS  PubMed  Google Scholar 

  24. Neher JJ, Emmrich JV, Fricker M, Mander PK, Théry C, Brown GC. Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc Natl Acad Sci U S A. 2013;110:E4098–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schilling M, Besselmann M, Müller M, Strecker JK, Ringelstein EB, Kiefer R. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol. 2005;196:290–7.

    Article  CAS  PubMed  Google Scholar 

  26. Sieber MW, Jaenisch N, Brehm M, Guenther M, Linnartz-Gerlach B, Neumann H, Witte OW, Frahm C. Attenuated inflammatory response in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice following stroke. PLoS One. 2013;8, e52982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Felger JC, Abe T, Kaunzner UW, Gottfried-Blackmore A, Gal-Toth J, McEwen BS, Iadecola C, Bulloch K. Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain Behav Immun. 2010;24:724–37.

    Article  CAS  PubMed  Google Scholar 

  28. Gottfried-Blackmore A, Kaunzner UW, Idoyaga J, Felger JC, McEwen BS, Bulloch K. Acute in vivo exposure to interferon-gamma enables resident brain dendritic cells to become effective antigen presenting cells. Proc Natl Acad Sci U S A. 2009;106:20918–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liesz A, Karcher S, Veltkamp R. Spectratype analysis of clonal T cell expansion in murine experimental stroke. J Neuroimmunol. 2013;257(1–2):46–52.

    Article  CAS  PubMed  Google Scholar 

  30. Enzmann G, Mysiorek C, Gorina R, Cheng Y-J, Ghavampour S, Hannocks M-J, Prinz V, Dirnagl U, Endres M, Prinz M, Beschorner R, Harter PN, Mittelbronn M, Engelhardt B, Sorokin L. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol. 2012;125:395–412.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dawson DA, Ruetzler CA, Carlos TM, Kochanek PM, Hallenbeck JM. Polymorphonuclear leukocytes and microcirculatory perfusion in acute stroke in the SHR. Keio J Med. 1996;45:248–52; discussion 252–3.

    Article  CAS  PubMed  Google Scholar 

  32. del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke. 1991;22:1276–83.

    Article  PubMed  Google Scholar 

  33. Ludewig P, Sedlacik J, Gelderblom M, Bernreuther C, Korkusuz Y, Wagener C, Gerloff C, Fiehler J, Magnus T, Horst AK. Carcinoembryonic antigen-related cell adhesion molecule 1 inhibits MMP-9-mediated blood-brain-barrier breakdown in a mouse model for ischemic stroke. Circ Res. 2013;113:1013–22.

    Article  CAS  PubMed  Google Scholar 

  34. Rosell A, Cuadrado E, Ortega-Aznar A, Hernández-Guillamon M, Lo EH, Montaner J. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke. 2008;39:1121–6.

    Article  CAS  PubMed  Google Scholar 

  35. Forster C, Clark HB, Ross ME, Iadecola C. Inducible nitric oxide synthase expression in human cerebral infarcts. Acta Neuropathol (Berl). 1999;97:215–20.

    Article  CAS  Google Scholar 

  36. Garcia-Bonilla L, Moore JM, Racchumi G, Zhou P, Butler JM, Iadecola C, Anrather J. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol. 2014;193:2531–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Emerich DF, Dean RL, Bartus RT. The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp Neurol. 2002;173:168–81.

    Article  PubMed  Google Scholar 

  38. Cuartero MI, Ballesteros I, Moraga A, Nombela F, Vivancos J, Hamilton JA, Corbí AL, Lizasoain I, Moro MA. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone. Stroke. 2013;44(12):3498–508.

    Article  CAS  PubMed  Google Scholar 

  39. Mattila OS, Strbian D, Saksi J, Pikkarainen TO, Rantanen V, Tatlisumak T, Lindsberg PJ. Cerebral mast cells mediate blood-brain barrier disruption in acute experimental ischemic stroke through perivascular gelatinase activation. Stroke. 2011;42:3600–5.

    Article  CAS  PubMed  Google Scholar 

  40. Strbian D, Kovanen PT, Karjalainen-Lindsberg M-L, Tatlisumak T, Lindsberg PJ. An emerging role of mast cells in cerebral ischemia and hemorrhage. Ann Med. 2009;41:438–50.

    Article  CAS  PubMed  Google Scholar 

  41. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab. 2007;27:1798–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, Austinat M, Nieswandt B, Wiendl H, Stoll G. Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood. 2010;115:3835–42.

    Article  CAS  PubMed  Google Scholar 

  43. Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, Orthey E, Arumugam TV, Leypoldt F, Simova O, Thom V, Friese MA, Prinz I, Hölscher C, Glatzel M, Korn T, Gerloff C, Tolosa E, Magnus T. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood. 2012;120:3793–802.

    Article  CAS  PubMed  Google Scholar 

  44. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A. Pivotal role of cerebral interleukin-17-producing γδT cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15:946–50.

    Article  CAS  PubMed  Google Scholar 

  45. Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006;113:2105–12.

    Article  PubMed  Google Scholar 

  46. Li P, Gan Y, Sun B-L, Zhang F, Lu B, Gan Y, Liang W, Thomson AW, Chen J, Hu X. Adoptive regulatory T cell therapy protects against cerebral ischemia. Ann Neurol. 2012;74:458–71.

    Article  Google Scholar 

  47. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15:192–9.

    Article  CAS  PubMed  Google Scholar 

  48. Liesz A, Zhou W, Na S-Y, Hämmerling GJ, Garbi N, Karcher S, Mracsko E, Backs J, Rivest S, Veltkamp R. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci. 2013;33:17350–62.

    Article  CAS  PubMed  Google Scholar 

  49. Planas AM, Chamorro A. Regulatory T cells protect the brain after stroke. Nat Med. 2009;15:138–9.

    Article  CAS  PubMed  Google Scholar 

  50. Abete P, Testa G, Cacciatore F, Della-Morte D, Galizia G, Langellotto A, Rengo F. Ischemic preconditioning in the younger and aged heart. Aging Dis. 2011;2:138–48.

    PubMed  PubMed Central  Google Scholar 

  51. Offner H, Hurn PD. A novel hypothesis: regulatory B lymphocytes shape outcome from experimental stroke. Transl Stroke Res. 2012;3:324–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ren X, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, Offner H. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci. 2011;31:8556–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Becker KJ. Sensitization and tolerization to brain antigens in stroke. NSC. 2009;158:1090–7.

    CAS  Google Scholar 

  54. Urra X, Miró F, Chamorro A, Planas AM. Antigen-specific immune reactions to ischemic stroke. Front Cell Neurosci. 2014;8:278.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ortega SB, Noorbhai I, Poinsatte K, Kong X, Anderson A, Monson NL, Stowe AM. Stroke induces a rapid adaptive autoimmune response to novel neuronal antigens. Discov Med. 2015;19:381–92.

    PubMed  PubMed Central  Google Scholar 

  57. Planas AM, Gómez-Choco M, Urra X, Gorina R, Caballero M, Chamorro A. Brain-derived antigens in lymphoid tissue of patients with acute stroke. J Immunol. 2012;188:2156–63.

    Article  CAS  PubMed  Google Scholar 

  58. Korhonen P, Kanninen KM, Lehtonen S, Lemarchant S, Puttonen KA, Oksanen M, Dhungana H, Loppi S, Pollari E, Wojciechowski S, Kidin I, García-Berrocoso T, Giralt D, Montaner J, Koistinaho J, Malm T. Immunomodulation by interleukin-33 is protective in stroke through modulation of inflammation. Brain Behav Immun. 2015;49:322–36.

    Article  CAS  PubMed  Google Scholar 

  59. Xiong X, Barreto GE, Xu L, Ouyang YB, Xie X, Giffard RG. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke. 2011;42:2026–32.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu X, Zhang Z, Guo W, Burnstock G, He C, Xiang Z. The superficial glia limitans of mouse and monkey brain and spinal cord. Anat Rec (Hoboken). 2013;296:995–1007.

    Article  Google Scholar 

  61. Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42:3323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dirnagl U, Niwa K, Sixt G, Villringer A. Cortical hypoperfusion after global forebrain ischemia in rats is not caused by microvascular leukocyte plugging. Stroke. 1994;25:1028–38.

    Article  CAS  PubMed  Google Scholar 

  64. Hudetz AG, Oliver JA, Wood JD, Newman PJ, Kampine JP. Leukocyte adhesion in pial cerebral venules after PMA stimulation and ischemia/reperfusion in vivo. Adv Exp Med Biol. 1997;411:513–8.

    Article  CAS  PubMed  Google Scholar 

  65. Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI. Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke. 2000;31:1153–61.

    Article  CAS  PubMed  Google Scholar 

  66. Owens T, Bechmann I, Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008;67:1113–21.

    Article  PubMed  Google Scholar 

  67. Chinnery HR, Ruitenberg MJ, McMenamin PG. Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice. J Neuropathol Exp Neurol. 2010;69:896–909.

    Article  PubMed  Google Scholar 

  68. Kivisäkk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L, Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A. 2003;100:8389–94.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Engelhardt B, Wolburg-Buchholz K, Wolburg H. Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech. 2001;52:112–29.

    Article  CAS  PubMed  Google Scholar 

  70. Steffen BJ, Breier G, Butcher EC, Schulz M, Engelhardt B. ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am J Pathol. 1996;148:1819–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F. CC chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009;10:514–23.

    Article  CAS  PubMed  Google Scholar 

  72. Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim K-W, Klein E, Kalchenko V, Bendel P, Lira SA, Jung S, Schwartz M. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity. 2013;38:555–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Petrovic-Djergovic D, Hyman MC, Ray JJ, Bouis D, Visovatti SH, Hayasaki T, Pinsky DJ. Tissue-resident ecto-5′ nucleotidase (CD73) regulates leukocyte trafficking in the ischemic brain. J Immunol. 2012;188:2387–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lindsberg PJ, Strbian D, Karjalainen-Lindsberg M-L. Mast cells as early responders in the regulation of acute blood-brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab. 2010;30:689–702.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Strbian D, Karjalainen-Lindsberg M-L, Tatlisumak T, Lindsberg PJ. Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab. 2006;26:605–12.

    Article  PubMed  Google Scholar 

  76. Pérez-de Puig I, Miró-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, Urra X, Chamorro A, Planas AM. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol (Berl). 2015;129:239–57.

    Article  Google Scholar 

  77. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol. 1994;144:188–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Barlow Y. T lymphocytes and immunosuppression in the burned patient: a review. Burns. 1994;20:487–90.

    Article  CAS  PubMed  Google Scholar 

  79. Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38:1336–45.

    Article  PubMed  Google Scholar 

  80. Denes A, Pradillo JM, Drake C, Buggey H, Rothwell NJ, Allan SM. Surgical manipulation compromises leukocyte mobilization responses and inflammation after experimental cerebral ischemia in mice. Front Neurosci. 2013;7:271.

    PubMed  Google Scholar 

  81. Hug A, Dalpke A, Wieczorek N, Giese T, Lorenz A, Auffarth G, Liesz A, Veltkamp R. Infarct volume is a major determiner of post-stroke immune cell function and susceptibility to infection. Stroke. 2009;40:3226–32.

    Article  PubMed  Google Scholar 

  82. Czlonkowska A, Korlak J, KUCZYŃSKA A. Lymphocyte subsets after stroke. Ann N Y Acad Sci. 1988;540:608–10.

    Article  CAS  PubMed  Google Scholar 

  83. Gendron A, Teitelbaum J, Cossette C, Nuara S, Dumont M, Geadah D, du Souich P, Kouassi E. Temporal effects of left versus right middle cerebral artery occlusion on spleen lymphocyte subsets and mitogenic response in Wistar rats. Brain Res. 2002;955:85–97.

    Article  CAS  PubMed  Google Scholar 

  84. Meyer S, Strittmatter M, Fischer C, Georg T, Schmitz B. Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. Neuroreport. 2004;15:357–61.

    Article  CAS  PubMed  Google Scholar 

  85. Brooks WH, Cross RJ, Roszman TL, Markesbery WR. Neuroimmunomodulation: neural anatomical basis for impairment and facilitation. Ann Neurol. 1982;12:56–61.

    Article  CAS  PubMed  Google Scholar 

  86. Cross RJ, Markesbery WR, Brooks WH, Roszman TL. Hypothalamic-immune interactions. I. The acute effect of anterior hypothalamic lesions on the immune response. Brain Res. 1980;196:79–87.

    Article  CAS  PubMed  Google Scholar 

  87. Chapman KZ, Dale VQ, Denes A, Bennett G, Rothwell NJ, Allan SM, McColl BW. A rapid and transient peripheral inflammatory response precedes brain inflammation after experimental stroke. J Cereb Blood Flow Metab. 2009;29:1764–8.

    Article  PubMed  Google Scholar 

  88. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2005;26:654–65.

    Article  Google Scholar 

  89. Ferrarese C, Mascarucci P, Zoia C, Cavarretta R, Frigo M, Begni B, Sarinella F, Frattola L, De Simoni MG. Increased cytokine release from peripheral blood cells after acute stroke. J Cereb Blood Flow Metab. 1999;19:1004–9.

    Article  CAS  PubMed  Google Scholar 

  90. Basic Kes V, Simundic A-M, Nikolac N, Topic E, Demarin V. Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clin Biochem. 2008;41:1330–4.

    Article  CAS  PubMed  Google Scholar 

  91. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005;6:775–86.

    Article  CAS  PubMed  Google Scholar 

  92. Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk H-D, Meisel A. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198:725–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Langhorne P, Stott DJ, Robertson L, MacDonald J, Jones L, McAlpine C, Dick F, Taylor GS, Murray G. Medical complications after stroke: a multicenter study. Stroke. 2000;31:1223–9.

    Article  CAS  PubMed  Google Scholar 

  94. Czlonkowska A, Cyrta B, Korlak J. Immunological observations on patients with acute cerebral vascular disease. J Neurol Sci. 1979;43:455–64.

    Article  CAS  PubMed  Google Scholar 

  95. Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol. 2006;176:6523–31.

    Article  CAS  PubMed  Google Scholar 

  96. Offner H, Vandenbark AA, Hurn PD. Effect of experimental stroke on peripheral immunity: CNS ischemia induces profound immunosuppression. Neuroscience. 2009;158:1098–111.

    Article  CAS  PubMed  Google Scholar 

  97. Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker KR. A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol. 2012;7(4):1017–24.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sahota P, Vahidy F, Nguyen C, Bui T-T, Yang B, Parsha K, Garrett J, Bambhroliya A, Barreto A, Grotta JC, Aronowski J, Rahbar MH, Savitz S. Changes in spleen size in patients with acute ischemic stroke: a pilot observational study. Int J Stroke. 2013;8:60–7.

    Article  PubMed  Google Scholar 

  99. Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, Sun Y, Severe N, Dutta P, Scharff J, Scadden DT, Weissleder R, Swirski FK, Moskowitz MA, Nahrendorf M. Ischemic stroke activates hematopoietic bone marrow stem cells. Circ Res. 2015;116:407–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Anrather .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anrather, J. (2016). The Peripheral Immune Response to Stroke. In: Chen, J., Zhang, J., Hu, X. (eds) Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-32337-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32337-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32335-0

  • Online ISBN: 978-3-319-32337-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics