Skip to main content

The Role of Nonneuronal Nrf2 Pathway in Ischemic Stroke: Damage Control and Potential Tissue Repair

  • Chapter
  • First Online:
Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke

Abstract

Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor that controls the expression of predominant antioxidant system in the central nervous system (CNS). Under normal conditions, Nrf2 is sequestered by Keap1 and degenerated by the ubiquitin system. Oxidative stress initiates Nrf2 nuclear translocation, leading to expression of antioxidant molecules and enzymes. In stroke, oxidative stress is one of the major causes of neuronal death, and Nrf2 pathway is activated in both in vitro and in vivo ischemic models. In addition to mediate self-defense in neurons, Nrf2 also actively regulates the expression of cytoprotective enzymes in other cell types within the neurovascular unit (NVU), including astrocytes and endothelial cells, and thus supports neuronal function and survival through cell–cell interaction. The roles of microglias in stroke are still controversial, but close to be clarified. In this chapter, we will briefly introduce Nrf2 pathway, followed by its key roles of nonneuronal Nrf2 in limiting ischemic injury and emerging roles in brain tissue repair after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Motohashi H, O’Connor T, Katsuoka F, et al. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene. 2002;294(1–2):1–12.

    Article  CAS  PubMed  Google Scholar 

  2. Jain AK, Jaiswal AK. GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem. 2007;282(22):16502–10.

    Article  CAS  PubMed  Google Scholar 

  3. Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22.

    Article  CAS  PubMed  Google Scholar 

  4. Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1–Nrf2 pathway. Arch Toxicol. 2011;85(4):241–72.

    Article  CAS  PubMed  Google Scholar 

  5. Motohashi H, Yamamoto M. Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004;10(11):549–57.

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto T, Suzuki T, Kobayashi A, et al. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol. 2008;28(8):2758–70. Pubmed Central PMCID: 2293100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McMahon M, Thomas N, Itoh K, et al. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J Biol Chem. 2006;281(34):24756–68.

    Article  CAS  PubMed  Google Scholar 

  8. Jain AK, Bloom DA, Jaiswal AK. Nuclear import and export signals in control of Nrf2. J Biol Chem. 2005;280(32):29158–68.

    Article  CAS  PubMed  Google Scholar 

  9. Li W, Kong AN. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog. 2009;48(2):91–104. Pubmed Central PMCID: 2631094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang HC, Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem. 2002;277(45):42769–74. PubMed PMID: WOS:000179081200046. English.

    Article  CAS  PubMed  Google Scholar 

  11. Jain AK, Jaiswal AK. Phosphorylation of tyrosine 568 controls nuclear export of Nrf2. J Biol Chem. 2006;281(17):12132–42.

    Article  CAS  PubMed  Google Scholar 

  12. Rada P, Rojo AI, Chowdhry S, et al. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol. 2011;31(6):1121–33. Pubmed Central PMCID: 3067901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itoh K, Igarashi K, Hayashi N, et al. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol. 1995;15(8):4184–93. Pubmed Central PMCID: 230657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991;266(18):11632–9.

    CAS  PubMed  Google Scholar 

  15. Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:233–60.

    Article  CAS  PubMed  Google Scholar 

  16. Rada P, Rojo AI, Evrard-Todeschi N, et al. Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/beta-TrCP axis. Mol Cell Biol. 2012;32(17):3486–99. Pubmed Central PMCID: 3422007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rojo AI, Medina-Campos ON, Rada P, et al. Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: role of glycogen synthase kinase-3. Free Radic Biol Med. 2012;52(2):473–87.

    Article  CAS  PubMed  Google Scholar 

  18. Lee OH, Jain AK, Papusha V, et al. An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance. J Biol Chem. 2007;282(50):36412–20.

    Article  CAS  PubMed  Google Scholar 

  19. Niture SK, Jaiswal AK. Prothymosin-alpha mediates nuclear import of the INrf2/Cul3 Rbx1 complex to degrade nuclear Nrf2. J Biol Chem. 2009;284(20):13856–68. Pubmed Central PMCID: 2679486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holtzclaw WD, Dinkova-Kostova AT, Talalay P. Protection against electrophile and oxidative stress by induction of phase 2 genes: the quest for the elusive sensor that responds to inducers. Adv Enzyme Regul. 2004;44(1):335–67.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang M, An C, Gao Y, et al. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol. 2013;100:30–47.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Talalay P, Cho C-G, et al. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A. 1992;89(6):2399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shih AY, Li P, Murphy TH. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci. 2005;25(44):10321–35.

    Article  CAS  PubMed  Google Scholar 

  24. Kraft AD, Lee JM, Johnson DA, et al. Neuronal sensitivity to kainic acid is dependent on the Nrf2-mediated actions of the antioxidant response element. J Neurochem. 2006;98(6):1852–65.

    Article  CAS  PubMed  Google Scholar 

  25. del Zoppo GJ. The neurovascular unit in the setting of stroke. J Intern Med. 2010;267(2):156–71. Pubmed Central PMCID: Pmc3001328, Epub 2010/02/24. eng.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–414.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang JH, Badaut J, Tang J, et al. The vascular neural network—a new paradigm in stroke pathophysiology. Nat Rev Neurol. 2012;8(12):711–6. Pubmed Central PMCID: Pmc3595043, Epub 2012/10/17. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silva-Islas C, Colín-González AL, Maldonado PD, et al. Nrf2 activation, an innovative therapeutic alternative in cerebral ischemia. INTECH Open Access; 2012.

    Google Scholar 

  29. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Terasaki Y, Liu Y, Hayakawa K, et al. Mechanisms of neurovascular dysfunction in acute ischemic brain. Curr Med Chem. 2014;21(18):2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21(1):2–14.

    Article  CAS  PubMed  Google Scholar 

  32. Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol. 2003;62(2):127–36.

    Article  CAS  PubMed  Google Scholar 

  33. Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radic Biol Med. 2005;39(4):429–43.

    Article  CAS  PubMed  Google Scholar 

  34. Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med. 2005;38(11):1433–44.

    Article  CAS  PubMed  Google Scholar 

  35. Gouriou Y, Demaurex N, Bijlenga P, et al. Mitochondrial calcium handling during ischemia-induced cell death in neurons. Biochimie. 2011;93(12):2060–7.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Wang H, Li J, et al. Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci. 2004;24(47):10616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moro MA, Almeida A, Bolaños JP, et al. Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med. 2005;39(10):1291–304.

    Article  CAS  PubMed  Google Scholar 

  38. Hallenbeck JM, Dutka AJ, Tanishima T, et al. Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke. 1986;17(2):246–53.

    Article  CAS  PubMed  Google Scholar 

  39. Clark R, Lee E, Fish C, et al. Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study. Brain Res Bull. 1993;31(5):565–72.

    Article  CAS  PubMed  Google Scholar 

  40. Campanella M, Sciorati C, Tarozzo G, et al. Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke. 2002;33(2):586–92.

    Article  PubMed  Google Scholar 

  41. Shichita T, Ago T, Kamouchi M, et al. Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J Neurochem. 2012;123(s2):29–38.

    Article  CAS  PubMed  Google Scholar 

  42. Heiss W-D. Stroke—acute interventions. Berlin: Springer; 2002.

    Book  Google Scholar 

  43. Hou ST, MacManus JP. Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol. 2002;221:93–148.

    Article  CAS  PubMed  Google Scholar 

  44. Dinkova-Kostova A, Cheah J, Samouilov A, et al. Phenolic Michael reaction acceptors: combined direct and indirect antioxidant defenses against electrophiles and oxidants. Med Chem. 2007;3(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  45. Lindenau J, Noack H, Possel H, et al. Cellular distribution of superoxide dismutases in the rat CNS. Glia. 2000;29(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  46. Dinkova‐Kostova AT, Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res. 2008;52(S1):S128–38.

    PubMed  Google Scholar 

  47. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116.

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi A, Kang M-I, Okawa H, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24(16):7130–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peters O, Back T, Lindauer U, et al. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab. 1998;18(2):196–205.

    Article  CAS  PubMed  Google Scholar 

  50. Christensen T, Bruhn T, Balchen T, et al. Evidence for formation of hydroxyl radicals during reperfusion after global cerebral ischaemia in rats using salicylate trapping and microdialysis. Neurobiol Dis. 1994;1(3):131–8.

    Article  CAS  PubMed  Google Scholar 

  51. Liu S, Liu M, Peterson S, et al. Hydroxyl radical formation is greater in striatal core than in penumbra in a rat model of ischemic stroke. J Neurosci Res. 2003;71(6):882–8.

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka N, Ikeda Y, Ohta Y, et al. Expression of Keap1–Nrf2 system and antioxidative proteins in mouse brain after transient middle cerebral artery occlusion. Brain Res. 2011;1370:246–53.

    Article  CAS  PubMed  Google Scholar 

  53. Dang J, Brandenburg L-O, Rosen C, et al. Nrf2 expression by neurons, astroglia, and microglia in the cerebral cortical penumbra of ischemic rats. J Mol Neurosci. 2012;46(3):578–84.

    Article  CAS  PubMed  Google Scholar 

  54. Li M, Zhang X, Cui L, et al. The neuroprotection of oxymatrine in cerebral ischemia/reperfusion is related to nuclear factor erythroid 2-related factor 2 (nrf2)-mediated antioxidant response: role of nrf2 and hemeoxygenase-1 expression. Biol Pharm Bull. 2011;34(5):595–601.

    Article  CAS  PubMed  Google Scholar 

  55. Srivastava S, Alfieri A, Siow R, et al. Temporal and spatial distribution of Nrf2 in rat brain following stroke: quantification of nuclear to cytoplasmic Nrf2 content using a novel immunohistochemical technique. J Physiol. 2013;591(14):3525–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liverman CS, Cui L, Yong C, et al. Response of the brain to oligemia: gene expression, c-Fos, and Nrf2 localization. Mol Brain Res. 2004;126(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  57. Gladstone DJ, Black SE, Hakim AM. Toward wisdom from failure lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002;33(8):2123–36.

    Article  PubMed  Google Scholar 

  58. Herken R, Götz W, Thies M. Appearance of laminin, heparan sulphate proteoglycan and collagen type IV during initial stages of vascularisation of the neuroepithelium of the mouse embryo. J Anat. 1990;169:189.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Engvall E, Davis GE, Dickerson K, et al. Mapping of domains in human laminin using monoclonal antibodies: localization of the neurite-promoting site. J Cell Biol. 1986;103(6):2457–65.

    Article  CAS  PubMed  Google Scholar 

  60. Grant D, Kleinman H. Regulation of capillary formation by laminin and other components of the extracellular matrix. Regulation of angiogenesis. Berlin: Springer; 1997. p. 317–33.

    Google Scholar 

  61. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5(5):347–60.

    Article  CAS  PubMed  Google Scholar 

  62. Zonta M, Angulo MC, Gobbo S, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  63. del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab. 2003;23(8):879–94.

    Article  PubMed  Google Scholar 

  64. del Zoppo GJ, Milner R. Integrin–matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol. 2006;26(9):1966–75.

    Article  PubMed  CAS  Google Scholar 

  65. Mabuchi T, Lucero J, Feng A, et al. Focal cerebral ischemia preferentially affects neurons distant from their neighboring microvessels. J Cereb Blood Flow Metab. 2005;25(2):257–66.

    Article  PubMed  Google Scholar 

  66. Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol. 2015;11(1):56–64.

    Article  PubMed  Google Scholar 

  67. Fumagalli S, Perego C, Pischiutta F, et al. The ischemic environment drives microglia and macrophage function. Front Neurol. 2015;6:81.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain. Eur J Biochem. 2000;267(16):4912–6.

    Article  CAS  PubMed  Google Scholar 

  69. Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci. 2004;24(5):1101–12.

    Article  CAS  PubMed  Google Scholar 

  70. Shih AY, Johnson DA, Wong G, et al. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci. 2003;23(8):3394–406.

    CAS  PubMed  Google Scholar 

  71. Chen Y, Vartiainen NE, Ying W, et al. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem. 2001;77(6):1601–10.

    Article  CAS  PubMed  Google Scholar 

  72. Halliwell B. Role of free radicals in the neurodegenerative diseases. Drugs Aging. 2001;18(9):685–716.

    Article  CAS  PubMed  Google Scholar 

  73. Vargas MR, Johnson JA. The Nrf2–ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med. 2009;11:e17.

    Article  PubMed  Google Scholar 

  74. Bambrick L, Kristian T, Fiskum G. Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochem Res. 2004;29(3):601–8.

    Article  CAS  PubMed  Google Scholar 

  75. Swanson RA, Ying W, Kauppinen TM. Astrocyte influences on ischemic neuronal death. Curr Mol Med. 2004;4(2):193–205.

    Article  CAS  PubMed  Google Scholar 

  76. Calkins MJ, Jakel RJ, Johnson DA, et al. Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription. Proc Natl Acad Sci U S A. 2005;102(1):244–9.

    Article  CAS  PubMed  Google Scholar 

  77. Calkins MJ, Vargas MR, Johnson DA, et al. Astrocyte-specific overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition. Toxicol Sci. 2010;115(2):557–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bell KF, Fowler JH, Al-Mubarak B, et al. Activation of Nrf2-regulated glutathione pathway genes by ischemic preconditioning. Oxid Med Cell Longev. 2011;2011:689524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Narayanan SV, Dave KR, Saul I, et al. Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2–related factor 2. Stroke. 2015;46(6):1626–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schroeter ML, Mertsch K, Giese H, et al. Astrocytes enhance radical defence in capillary endothelial cells constituting the blood-brain barrier. FEBS Lett. 1999;449(2):241–4.

    Article  CAS  PubMed  Google Scholar 

  81. Laird MD, Ramesh SS, Alleyne CH, et al. Astrocyte-derived glutathione attenuates hemin-induced cytotoxicity in murine cerebral microvessel. FASEB J. 2009;23(1_MeetingAbstracts):614.12.

    Google Scholar 

  82. Lee BJ, Egi Y, van Leyen K, et al. Edaravone, a free radical scavenger, protects components of the neurovascular unit against oxidative stress in vitro. Brain Res. 2010;1307:22–7.

    Article  CAS  PubMed  Google Scholar 

  83. Chrissobolis S, Banfi B, Sobey CG, et al. Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain. J Appl Physiol. 2012;113(2):184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pacher P, Szabo C. Role of the peroxynitrite-poly (ADP-ribose) polymerase pathway in human disease. Am J Pathol. 2008;173(1):2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Weiss N, Miller F, Cazaubon S, et al. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788(4):842–57.

    Article  CAS  PubMed  Google Scholar 

  86. Posada-Duque RA, Barreto GE, Cardona-Gomez GP. Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci. 2014;8:231.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Alfieri A, Srivastava S, Siow RC, et al. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood–brain barrier disruption and neurological deficits in stroke. Free Radic Biol Med. 2013;65:1012–22.

    Article  CAS  PubMed  Google Scholar 

  88. Bénardais K, Pul R, Singh V, et al. Effects of fumaric acid esters on blood–brain barrier tight junction proteins. Neurosci Lett. 2013;555:165–70.

    Article  PubMed  CAS  Google Scholar 

  89. Kunze R, Urrutia A, Hoffmann A, et al. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood–brain barrier integrity. Exp Neurol. 2015;266:99–111.

    Article  CAS  PubMed  Google Scholar 

  90. Wu S, Yue Y, Li J, et al. Procyanidin B2 attenuates neurological deficits and blood–brain barrier disruption in a rat model of cerebral ischemia. Mol Nutr Food Res. 2015;59(10):1930–41.

    Article  CAS  PubMed  Google Scholar 

  91. Chen G, Fang Q, Zhang J, et al. Role of the Nrf2‐ARE pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res. 2011;89(4):515–23.

    Article  CAS  PubMed  Google Scholar 

  92. Li T, Sun K-J, Wang H-D, et al. Tert-butylhydroquinone ameliorates early brain injury after experimental subarachnoid hemorrhage in mice by enhancing Nrf2-independent autophagy. Neurochem Res. 2015;40(9):1829–38.

    Article  CAS  PubMed  Google Scholar 

  93. Wang Z, Ji C, Wu L, et al. Tert-butylhydroquinone alleviates early brain injury and cognitive dysfunction after experimental subarachnoid hemorrhage: role of Keap1/Nrf2/ARE pathway. PLoS One. 2014;9(5):e97685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wu Q, Zhang X-S, Wang H-D, et al. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar Drugs. 2014;12(12):6125–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Shi S-S, Zhang H-B, Wang C-H, et al. Propofol attenuates early brain injury after subarachnoid hemorrhage in rats. J Mol Neurosci. 2015;7(4):538–45.

    Article  CAS  Google Scholar 

  96. Wang Z, Ma C, Meng CJ, et al. Melatonin activates the Nrf2‐ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. J Pineal Res. 2012;53(2):129–37.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang J, Zhu Y, Zhou D, et al. Recombinant human erythropoietin (rhEPO) alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Nrf2–ARE pathway. Cytokine. 2010;52(3):252–7.

    Article  CAS  PubMed  Google Scholar 

  98. Li T, Wang H, Ding Y, et al. Genetic elimination of Nrf2 aggravates secondary complications except for vasospasm after experimental subarachnoid hemorrhage in mice. Brain Res. 2014;1558:90–9.

    Article  CAS  PubMed  Google Scholar 

  99. Zhao J, Moore AN, Redell JB, et al. Enhancing expression of Nrf2-driven genes protects the blood–brain barrier after brain injury. J Neurosci. 2007;27(38):10240–8.

    Article  CAS  PubMed  Google Scholar 

  100. Jin W, Ni H, Hou X, et al. Tert-butylhydroquinone protects the spinal cord against inflammatory response produced by spinal cord injury. Ann Clin Lab Sci. 2014;44(2):151–7.

    CAS  PubMed  Google Scholar 

  101. Mao L, Wang H, Qiao L, et al. Disruption of Nrf2 enhances the upregulation of nuclear factor-kappaB activity, tumor necrosis factor-, and matrix metalloproteinase-9 after spinal cord injury in mice. Mediators Inflamm. 2010;2010:238321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Allan SM, Rothwell NJ. Inflammation in central nervous system injury. Philos Trans R Soc Lond B Biol Sci. 2003;358(1438):1669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bechmann I, Galea I, Perry VH. What is the blood–brain barrier (not)? Trends Immunol. 2007;28(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  104. Molina‐Holgado E, Molina‐Holgado F. Mending the broken brain: neuroimmune interactions in neurogenesis. J Neurochem. 2010;114(5):1277–90.

    PubMed  Google Scholar 

  105. Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–9. PubMed PMID: WOS:000357117200004. English.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41. Pubmed Central PMCID: 4506234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol. 1998;56(2):149–71.

    Article  CAS  PubMed  Google Scholar 

  108. Amantea D, Nappi G, Bernardi G, et al. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009;276(1):13–26.

    Article  CAS  PubMed  Google Scholar 

  109. Foresti R, Bains SK, Pitchumony TS, et al. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacol Res. 2013;76:132–48.

    Article  CAS  PubMed  Google Scholar 

  110. Dilshara MG, Lee K-T, Kim HJ, et al. Anti-inflammatory mechanism of α-viniferin regulates lipopolysaccharide-induced release of proinflammatory mediators in BV2 microglial cells. Cell Immunol. 2014;290(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  111. Min KJ, Kim JH, Jou I, et al. Adenosine induces heme oxygenase-1 expression in microglia through the activation of phosphatidylinositol-3-kinase and nuclear factor E2-related factor 2. Glia. 2008;56(9):1028–37.

    Article  PubMed  Google Scholar 

  112. Lee EJ, Ko HM, Jeong YH, et al. beta-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J Neuroinflammation. 2015;12:133. Pubmed Central PMCID: Pmc4502557. Epub 2015/07/16. eng.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lee D-S, Ko W, Yoon C-S, et al. KCHO-1, a novel antineuroinflammatory agent, inhibits lipopolysaccharide-induced neuroinflammatory responses through Nrf2-mediated heme oxygenase-1 expression in mouse BV2 microglia cells. Evid Based Complement Alternat Med. 2014;2014:357154.

    PubMed  PubMed Central  Google Scholar 

  114. Lee E-J, Kim H-S. The anti-inflammatory role of tissue inhibitor of metalloproteinase-2 in lipopolysaccharide-stimulated microglia. J Neuroinflammation. 2014;11:116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Jisun L, Samantha G, Jianhua Z. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441(2):523–40.

    Article  CAS  Google Scholar 

  116. Chen Y, Klionsky DJ. The regulation of autophagy–unanswered questions. J Cell Sci. 2011;124(2):161–70.

    Article  CAS  PubMed  Google Scholar 

  117. Cooper CE, Patel RP, Brookes PS, et al. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species. Trends Biochem Sci. 2002;27(10):489–92.

    Article  CAS  PubMed  Google Scholar 

  118. Bae SH, Sung SH, Oh SY, et al. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab. 2013;17(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  119. Vadlamudi RK, Joung I, Strominger JL, et al. p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem. 1996;271(34):20235–7.

    Article  CAS  PubMed  Google Scholar 

  120. Bjørkøy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Jain A, Lamark T, Sjøttem E, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010;285(29):22576–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fujita K-I, Maeda D, Xiao Q, et al. Nrf2-mediated induction of p62 controls Toll-like receptor-4–driven aggresome-like induced structure formation and autophagic degradation. Proc Natl Acad Sci U S A. 2011;108(4):1427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Riley BE, Kaiser SE, Shaler TA, et al. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J Cell Biol. 2010;191(3):537–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chang AL, Ulrich A, Suliman HB, et al. Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis. Free Radic Biol Med. 2015;78:179–89.

    Article  CAS  PubMed  Google Scholar 

  125. Ichimura Y, Waguri S, Sou Y-S, et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013;51(5):618–31.

    Article  CAS  PubMed  Google Scholar 

  126. Taguchi K, Fujikawa N, Komatsu M, et al. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci U S A. 2012;109(34):13561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang Z, Zhao T-Z, Zou Y-J, et al. Hypoxia induces autophagic cell death through hypoxia-inducible factor 1α in microglia. PLoS One. 2014;9(5):e96509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Yang Z, Zhong L, Zhong S, et al. Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model. Exp Mol Pathol. 2015;98(2):219–24.

    Article  CAS  PubMed  Google Scholar 

  129. Chen W, Sun Y, Liu K, et al. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regen Res. 2014;9(12):1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol Rev. 1997;77(3):759–803.

    CAS  PubMed  Google Scholar 

  131. Parnaik R, Raff MC, Scholes J. Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol. 2000;10(14):857–60.

    Article  CAS  PubMed  Google Scholar 

  132. Sierra A, Encinas JM, Deudero JJ, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010;7(4):483–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Henson PM, Hume DA. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 2006;27(5):244–50.

    Article  CAS  PubMed  Google Scholar 

  134. Sierra A, Abiega O, Shahraz A, et al. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci. 2013;7:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Faustino JV, Wang X, Johnson CE, et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci. 2011;31(36):12992–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lalancette-Hébert M, Gowing G, Simard A, et al. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci. 2007;27(10):2596–605.

    Article  PubMed  CAS  Google Scholar 

  137. Manoonkitiwongsa PS, Jackson-Friedman C, McMillan PJ, et al. Angiogenesis after stroke is correlated with increased numbers of macrophages: the clean-up hypothesis. J Cereb Blood Flow Metab. 2001;21(10):1223–31.

    Article  CAS  PubMed  Google Scholar 

  138. Mimche PN, Thompson E, Taramelli D, et al. Curcumin enhances non-opsonic phagocytosis of Plasmodium falciparum through up-regulation of CD36 surface expression on monocytes/macrophages. J Antimicrob Chemother. 2012;67(8):1895–904.

    Article  CAS  PubMed  Google Scholar 

  139. Suganuma H, Fahey JW, Bryan KE, et al. Stimulation of phagocytosis by sulforaphane. Biochem Biophys Res Commun. 2011;405(1):146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Harvey CJ, Thimmulappa RK, Sethi S, et al. Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci Transl Med. 2011;3(78):78ra32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Li E, Noda M, Doi Y, et al. The neuroprotective effects of milk fat globule-EGF factor 8 against oligomeric amyloid β toxicity. J Neuroinflammation. 2012;9(148):2657–66.

    Google Scholar 

  142. Zhao X, Sun G, Ting SM, et al. Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J Neurochem. 2015;133(1):144–52.

    Article  CAS  PubMed  Google Scholar 

  143. De Simone R, Ajmone-Cat MA, Tirassa P, et al. Apoptotic PC12 cells exposing phosphatidylserine promote the production of anti-inflammatory and neuroprotective molecules by microglial cells. J Neuropathol Exp Neurol. 2003;62(2):208–16.

    Article  PubMed  Google Scholar 

  144. Ryu K-Y, Cho G-S, Piao HZ, et al. Role of TGF-β in survival of phagocytizing microglia: autocrine suppression of TNF-α production and oxidative stress. Exp Neurobiol. 2012;21(4):151–7.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Neher JJ, Emmrich JV, Fricker M, et al. Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc Natl Acad Sci U S A. 2013;110(43):E4098–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, T., Sun, Y., Zhang, F. (2016). The Role of Nonneuronal Nrf2 Pathway in Ischemic Stroke: Damage Control and Potential Tissue Repair. In: Chen, J., Zhang, J., Hu, X. (eds) Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-32337-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32337-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32335-0

  • Online ISBN: 978-3-319-32337-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics