Skip to main content

The Role of Spleen-Derived Immune Cells in Ischemic Brain Injury

  • Chapter
  • First Online:

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Neuroinflammation modulates brain injury and recovery after stroke. The spleen, as the largest secondary lymphoid organ, contributes to this neuroinflammation, and therefore influences stroke-induced brain injury. When stroke occurs, pro-inflammatory cytokines in the ischemic brain are produced that stimulate inflammatory brain receptors, which initiate communication between the brain and the spleen via the sympathetic nervous system (SNS), parasympathetic nervous system (PNS), and hypothalamus-pituitary adrenal (HPA) axis. The spleen contains various immune cells, including T cells, B cells, monocytes, macrophages, NK, and NKT cells. SNS activity leads to the rapid release of immune cells from the spleen, transient increases of released immune cells into the blood circulation, and their migration to the ischemic brain, thus exacerbating neuroinflammation in the ischemic region and enlarging the infarction. Direct evidence that the spleen contributes to brain injury is the fact that splenectomy robustly reduces infarct size. In addition, reductions in spleen size are correlated with the severity of stroke. Furthermore, immune cells in the spleen are found in the ischemic brain. Nevertheless, although it is well established that the spleen contributes to brain injury, the underlying mechanisms remain unclear. Future studies will reveal how the spleen modulates brain injury, which immune cell types in the spleen play the most important roles, and whether the spleen has a long-term effect on brain recovery after stroke.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Knops M, Werner CG, Scherbakov N, Fiebach J, Dreier JP, Meisel A, Heuschmann PU, Jungehulsing GJ, von Haehling S, Dirnagl U, Anker SD, Doehner W. Investigation of changes in body composition, metabolic profile and skeletal muscle functional capacity in ischemic stroke patients: the rationale and design of the Body Size in Stroke Study (BoSSS). J Cachex Sarcopenia Muscle. 2013;4:199–207.

    Article  Google Scholar 

  2. Scherbakov N, von Haehling S, Anker SD, Dirnagl U, Doehner W. Stroke induced sarcopenia: muscle wasting and disability after stroke. Int J Cardiol. 2013;170:89–94.

    Article  PubMed  Google Scholar 

  3. Springer J, Schust S, Peske K, Tschirner A, Rex A, Engel O, Scherbakov N, Meisel A, von Haehling S, Boschmann M, Anker SD, Dirnagl U, Doehner W. Catabolic signaling and muscle wasting after acute ischemic stroke in mice: indication for a stroke-specific sarcopenia. Stroke. 2014;45:3675–83.

    Article  CAS  PubMed  Google Scholar 

  4. Ishikawa H, Tajiri N, Vasconcellos J, Kaneko Y, Mimura O, Dezawa M, Borlongan CV. Ischemic stroke brain sends indirect cell death signals to the heart. Stroke. 2013;44:3175–82.

    Article  PubMed  Google Scholar 

  5. Ottani A, Giuliani D, Mioni C, Galantucci M, Minutoli L, Bitto A, Altavilla D, Zaffe D, Botticelli AR, Squadrito F, Guarini S. Vagus nerve mediates the protective effects of melanocortins against cerebral and systemic damage after ischemic stroke. J Cereb Blood Flow Metab. 2009;29:512–23.

    Article  CAS  PubMed  Google Scholar 

  6. Wu S, Fang CX, Kim J, Ren J. Enhanced pulmonary inflammation following experimental intracerebral hemorrhage. Exp Neurol. 2006;200:245–9.

    Article  CAS  PubMed  Google Scholar 

  7. Offner H. Modeling immunity and inflammation in stroke: don’t be afraid of mice? Stroke. 2014;45:e181–2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26:654–65.

    Article  CAS  PubMed  Google Scholar 

  9. Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol. 2006;176:6523–31.

    Article  CAS  PubMed  Google Scholar 

  10. Ren C, Yan Z, Wei D, Gao X, Chen X, Zhao H. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res. 2009;1288:88–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ajmo Jr CT, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, Pennypacker KR. The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res. 2008;86:2227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ajmo Jr CT, Collier LA, Leonardo CC, Hall AA, Green SM, Womble TA, Cuevas J, Willing AE, Pennypacker KR. Blockade of adrenoreceptors inhibits the splenic response to stroke. Exp Neurol. 2009;218:47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaplin DD. Regulation of spleen white pulp structure and function by lymphotoxin. Adv Exp Med Biol. 2002;512:49–56.

    Article  CAS  PubMed  Google Scholar 

  14. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5:606–16.

    Article  CAS  PubMed  Google Scholar 

  15. Scothorne RJ. The spleen: structure and function. Histopathology. 1985;9:663–9.

    Article  CAS  PubMed  Google Scholar 

  16. Bronte V, Pittet MJ. The spleen in local and systemic regulation of immunity. Immunity. 2013;39:806–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. den Haan JM, Kraal G. Innate immune functions of macrophage subpopulations in the spleen. J Innate Immun. 2012;4:437–45.

    Article  Google Scholar 

  18. Hey YY, O’Neill HC. Murine spleen contains a diversity of myeloid and dendritic cells distinct in antigen presenting function. J Cell Mol Med. 2012;16:2611–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao L, Liu L, Guo B, Zhu B. Regulation of adaptive immune responses by guiding cell movements in the spleen. Front Microbiol. 2015;6:645.

    PubMed  PubMed Central  Google Scholar 

  20. Braun JS, Prass K, Dirnagl U, Meisel A, Meisel C. Protection from brain damage and bacterial infection in murine stroke by the novel caspase-inhibitor Q-VD-OPH. Exp Neurol. 2007;206:183–91.

    Article  CAS  PubMed  Google Scholar 

  21. Engel O, Meisel A. Models of infection before and after stroke: investigating new targets. Infect Disord Drug Targets. 2010;10:98–104.

    Article  CAS  PubMed  Google Scholar 

  22. Meisel A, Meisel C, Harms H, Hartmann O, Ulm L. Predicting post-stroke infections and outcome with blood-based immune and stress markers. Cerebrovasc Dis. 2012;33:580–8.

    Article  CAS  PubMed  Google Scholar 

  23. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005;6:775–86.

    Article  CAS  PubMed  Google Scholar 

  24. Arakawa K, Yasuda S, Hao H, Kataoka Y, Morii I, Kasahara Y, Kawamura A, Ishibashi-Ueda H, Miyazaki S. Significant association between neutrophil aggregation in aspirated thrombus and myocardial damage in patients with ST-segment elevation acute myocardial infarction. Circ J. 2009;73:139–44.

    Article  PubMed  Google Scholar 

  25. Ikegame Y, Yamashita K, Hayashi S, Yoshimura S, Nakashima S, Iwama T. Neutrophil elastase inhibitor prevents ischemic brain damage via reduction of vasogenic edema. Hypertens Res. 2010;33:703–7.

    Article  CAS  PubMed  Google Scholar 

  26. Perez-de-Puig I, Miro-Mur F, Ferrer-Ferrer M, Gelpi E, Pedragosa J, Justicia C, Urra X, Chamorro A, Planas AM. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129:239–57.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao X, Sun G, Zhang H, Ting SM, Song S, Gonzales N, Aronowski J. Polymorphonuclear neutrophil in brain parenchyma after experimental intracerebral hemorrhage. Transl Stroke Res. 2014;5:554–61.

    Article  PubMed  Google Scholar 

  28. Hammond MD, Taylor RA, Mullen MT, Ai Y, Aguila HL, Mack M, Kasner SE, McCullough LD, Sansing LH. CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci. 2014;34:3901–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Joo SP, Xie W, Xiong X, Xu B, Zhao H. Ischemic postconditioning protects against focal cerebral ischemia by inhibiting brain inflammation while attenuating peripheral lymphopenia in mice. Neuroscience. 2013;243:149–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dziennis S, Mader S, Akiyoshi K, Ren X, Ayala P, Burrows GG, Vandenbark AA, Herson PS, Hurn PD, Offner HA. Therapy with recombinant T-cell receptor ligand reduces infarct size and infiltrating inflammatory cells in brain after middle cerebral artery occlusion in mice. Metab Brain Dis. 2011;26:123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gu L, Xiong X, Zhang H, Xu B, Steinberg GK, Zhao H. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke. 2012;43:1941–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gu L, Xiong X, Wei D, Gao X, Krams S, Zhao H. T cells contribute to stroke-induced lymphopenia in rats. PLoS One. 2013;8:e59602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab. 2007;27:1798–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. CD4 + FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis. 2011;26:87–90.

    Article  PubMed  Google Scholar 

  35. Xiong X, Gu L, Zhang H, Xu B, Zhu S, Zhao H. The protective effects of T cell deficiency against brain injury are ischemic model-dependent in rats. Neurochem Int. 2013;62:265–70.

    Article  CAS  PubMed  Google Scholar 

  36. Chu W, Li M, Li F, Hu R, Chen Z, Lin J, Feng H. Immediate splenectomy down-regulates the MAPK-NF-kappaB signaling pathway in rat brain after severe traumatic brain injury. J Trauma Acute Care Surg. 2013;74:1446–53.

    Article  CAS  PubMed  Google Scholar 

  37. Li M, Li F, Luo C, Shan Y, Zhang L, Qian Z, Zhu G, Lin J, Feng H. Immediate splenectomy decreases mortality and improves cognitive function of rats after severe traumatic brain injury. J Trauma. 2011;71:141–7.

    Article  PubMed  Google Scholar 

  38. Ostrowski RP, Schulte RW, Nie Y, Ling T, Lee T, Manaenko A, Gridley DS, Zhang JH. Acute splenic irradiation reduces brain injury in the rat focal ischemic stroke model. Transl Stroke Res. 2012;3:473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker KR. A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol. 2012;7:1017–24.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Seifert HA, Leonardo CC, Hall AA, Rowe DD, Collier LA, Benkovic SA, Willing AE, Pennypacker KR. The spleen contributes to stroke induced neurodegeneration through interferon gamma signaling. Metab Brain Dis. 2012;27:131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang BJ, Men XJ, Lu ZQ, Li HY, Qiu W, Hu XQ. Splenectomy protects experimental rats from cerebral damage after stroke due to anti-inflammatory effects. Chin Med J (Engl). 2013;126:2354–60.

    CAS  Google Scholar 

  42. Kim E, Yang J, Beltran CD, Cho S. Role of spleen-derived monocytes/macrophages in acute ischemic brain injury. J Cereb Blood Flow Metab. 2014;34:1411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sahota P, Vahidy F, Nguyen C, Bui TT, Yang B, Parsha K, Garrett J, Bambhroliya A, Barreto A, Grotta JC, Aronowski J, Rahbar MH, Savitz S. Changes in spleen size in patients with acute ischemic stroke: a pilot observational study. Int J Stroke. 2013;8:60–7.

    Article  PubMed  Google Scholar 

  44. Gu LJ, Xiong XX, Ito T, Lee J, Xu BH, Krams S, Steinberg GK, Zhao H. Moderate hypothermia inhibits brain inflammation and attenuates stroke-induced immunodepression in rats. CNS Neurosci Ther. 2014;20:67–75.

    Article  CAS  PubMed  Google Scholar 

  45. Golden JE, Shahaduzzaman M, Wabnitz A, Green S, Womble TA, Sanberg PR, Pennypacker KR, Willing AE. Human umbilical cord blood cells alter blood and spleen cell populations after stroke. Transl Stroke Res. 2012;3:491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch-Puerta M, Ashok M, Czura CJ, Foxwell B, Tracey KJ, Ulloa L. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. 2006;203:1623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Galant SP, Underwood S, Allred S, Hanifin JM. Beta adrenergic receptor binding on polymorphonuclear leukocytes in atopic dermatitis. J Invest Dermatol. 1979;72:330–2.

    Article  CAS  PubMed  Google Scholar 

  48. Heijnen CJ, Rouppe van der Voort C, Wulffraat N, van der Net J, Kuis W, Kavelaars A. Functional alpha 1-adrenergic receptors on leukocytes of patients with polyarticular juvenile rheumatoid arthritis. J Neuroimmunol. 1996;71:223–6.

    Article  CAS  PubMed  Google Scholar 

  49. Kozlik R, Kramer HH, Wicht H, Bircks W, Reinhardt D. Beta-adrenoceptor density on mononuclear leukocytes and right atrial myocardium in infants and children with congenital heart disease. Klin Wochenschr. 1991;69:910–6.

    Article  CAS  PubMed  Google Scholar 

  50. Nwosu UC, Rice PJ. Beta-adrenoceptor changes in mononuclear leukocytes during pregnancy. Proc Soc Exp Biol Med. 1995;209:157–62.

    Article  CAS  PubMed  Google Scholar 

  51. Prengel AW, Lindner KH, Anhaupl T, Trunk E, Georgieff M, Lurie KG. Regulation of beta 2-adrenergic receptors on mononuclear leukocytes in patients with acute ischemic heart disease. Crit Care Med. 1997;25:646–51.

    Article  CAS  PubMed  Google Scholar 

  52. Hanna RN, Hedrick CC. Stressing out stem cells: linking stress and hematopoiesis in cardiovascular disease. Nat Med. 2014;20:707–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D, Hashimoto D, Merad M, Frenette PS. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity. 2012;37:290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheyuo C, Jacob A, Wu R, Zhou M, Coppa GF, Wang P. The parasympathetic nervous system in the quest for stroke therapeutics. J Cereb Blood Flow Metab. 2011;31:1187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Melief J, de Wit SJ, van Eden CG, Teunissen C, Hamann J, Uitdehaag BM, Swaab D, Huitinga I. HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normal-appearing white matter. Acta Neuropathol. 2013;126:237–49.

    Article  PubMed  Google Scholar 

  56. Silverman MN, Sternberg EM. Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci. 2012;1261:55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bova IY, Bornstein NM, Korczyn AD. Acute infection as a risk factor for ischemic stroke. Stroke. 1996;27:2204–6.

    Article  CAS  PubMed  Google Scholar 

  58. Emsley HC, Tyrrell PJ. Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab. 2002;22:1399–419.

    Article  CAS  PubMed  Google Scholar 

  59. Galante A, Pietroiusti A, Silvestrini M, Stanzione P, Bernardi G. Leukocyte aggregation: a possible link between infection and ischemic stroke. Stroke. 1992;23:1533.

    CAS  PubMed  Google Scholar 

  60. Jeerakathil T, Lo W. Infection as cause of stroke: a contagious idea that may explain racial disparity. Neurology. 2014;82:908–9.

    Article  PubMed  Google Scholar 

  61. Mattila KJ, Valtonen VV, Nieminen MS, Asikainen S. Role of infection as a risk factor for atherosclerosis, myocardial infarction, and stroke. Clin Infect Dis. 1998;26:719–34.

    Article  CAS  PubMed  Google Scholar 

  62. Palm F, Urbanek C, Grau A. Infection, its treatment and the risk for stroke. Curr Vasc Pharmacol. 2009;7:146–52.

    Article  CAS  PubMed  Google Scholar 

  63. Worthmann H, Tryc AB, Deb M, Goldbecker A, Ma YT, Tountopoulou A, Lichtinghagen R, Weissenborn K. Linking infection and inflammation in acute ischemic stroke. Ann N Y Acad Sci. 2010;1207:116–22.

    Article  CAS  PubMed  Google Scholar 

  64. Dacey LJ, Likosky DS, Leavitt BJ, Lahey SJ, Quinn RD, Hernandez Jr F, Quinton HB, Desimone JP, Ross CS, O'Connor GT, Northern New England Cardiovascular Disease Study Group. Perioperative stroke and long-term survival after coronary bypass graft surgery. Ann Thorac Surg. 2005;79:532–6. discussion 537.

    Article  PubMed  Google Scholar 

  65. McAlister FA, Jacka M, Graham M, Youngson E, Cembrowski G, Bagshaw SM, Pannu N, Townsend DR, Srinathan S, Alonso-Coello P, Devereaux PJ. The prediction of postoperative stroke or death in patients with preoperative atrial fibrillation undergoing non-cardiac surgery: a VISION sub-study. J Thromb Haemost. 2015;13(10):1768–75.

    Article  CAS  PubMed  Google Scholar 

  66. Wu JC, Chen YC, Liu L, Chen TJ, Huang WC, Thien PF, Cheng H, Lo SS. The risk of stroke after spinal fusion surgery: a national cohort study. Spine J. 2012;12:492–9.

    Article  PubMed  Google Scholar 

  67. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kleinschnitz C, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121:679–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, Orthey E, Arumugam TV, Leypoldt F, Simova O, Thom V, Friese MA, Prinz I, Holscher C, Glatzel M, Korn T, Gerloff C, Tolosa E, Magnus T. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood. 2012;120:3793–802.

    Article  CAS  PubMed  Google Scholar 

  70. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15:192–9.

    Article  CAS  PubMed  Google Scholar 

  71. Planas AM, Chamorro A. Regulatory T cells protect the brain after stroke. Nat Med. 2009;15:138–9.

    Article  CAS  PubMed  Google Scholar 

  72. Ren X, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, Offner H. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci. 2011;31:8556–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.

    Article  CAS  PubMed  Google Scholar 

  74. Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol. 2013;31:317–43.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S, Zhou X, Qin Z, Jia J, Zhen X. Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun. 2014;40:131–42.

    Article  CAS  PubMed  Google Scholar 

  76. Pan J, Jin JL, Ge HM, Yin KL, Chen X, Han LJ, Chen Y, Qian L, Li XX, Xu Y. Malibatol a regulates microglia M1/M2 polarization in experimental stroke in a PPARgamma-dependent manner. J Neuroinflammation. 2015;12:51.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Suenaga J, Hu X, Pu H, Shi Y, Hassan SH, Xu M, Leak RK, Stetler RA, Gao Y, Chen J. White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Exp Neurol. 2015;272:109–19.

    Article  CAS  PubMed  Google Scholar 

  78. Uranchimeg D, Kim JH, Kim JY, Lee WT, Park KA, Batbaatar G, Tundevrentsen S, Amgalanbaatar D, Lee JE. Recovered changes in the spleen by agmatine treatment after transient cerebral ischemia. Anat Cell Biol. 2010;43:44–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bao Y, Kim E, Bhosle S, Mehta H, Cho S. A role for spleen monocytes in post-ischemic brain inflammation and injury. J Neuroinflammation. 2010;7:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

I wish to thank Ms. Cindy H. Samos for editorial assistance. This study was supported by NINDS grants 2R56NS06413606, 2 R01 NS064136-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Zhao Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, H. (2016). The Role of Spleen-Derived Immune Cells in Ischemic Brain Injury. In: Chen, J., Zhang, J., Hu, X. (eds) Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-32337-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32337-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32335-0

  • Online ISBN: 978-3-319-32337-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics