Skip to main content

Algebraic hyperbolicity

  • Chapter
  • First Online:
  • 704 Accesses

Part of the book series: IMPA Monographs ((IMPA,volume 5))

Abstract

This chapter deals with an algebraic analogue of the Kobayashi hyperbolicity, introduced in [17]. We shall explain how the Kobayashi hyperbolicity implies restrictions on the ratio between the genus and the degree of algebraic curves contained in a hyperbolic projective algebraic manifold, and shall take this property as a definition. Then, we will discuss some general conjecture and related results, in particular Bogomolov’s proof of the finiteness of rational and elliptic curves on surfaces whose Chern classes satisfy a certain inequality. In the second part, an account of known results about algebraic hyperbolicity of generic projective hypersurfaces of high degree will be done.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A K3 surface is a simply connected surface X with irregularity \(q(X) = h^{1}(X,\mathcal{O}_{X}) = 0\) and trivial canonical bundle \(K_{X} \simeq \mathcal{O}_{X}\).

  2. 2.

    Let T be a two dimensional complex torus with a base point chosen. The involution ι: T → T has exactly 16 fixed points, namely the points of order 2 on T, so that the quotient \(T/\langle 1,\iota \rangle\) has sixteen ordinary double points. Resolving the double points we obtain a smooth surface X, the Kummer surface Km(T) of T. Kummer surfaces are special case of K3 surfaces.

Bibliography

  1. F. A. Bogomolov. Holomorphic tensors and vector bundles on projective manifolds. Izv. Akad. Nauk SSSR Ser. Mat., 42(6):1227–1287, 1439, 1978.

    Google Scholar 

  2. Serge Cantat. Deux exemples concernant une conjecture de Serge Lang. C. R. Acad. Sci. Paris Sér. I Math., 330(7):581–586, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  3. Herbert Clemens. Curves on generic hypersurfaces. Ann. Sci. École Norm. Sup. (4), 19(4):629–636, 1986.

    MathSciNet  MATH  Google Scholar 

  4. Herbert Clemens and Ziv Ran. Twisted genus bounds for subvarieties of generic hypersurfaces. Amer. J. Math., 126(1):89–120, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  5. Jean-Pierre Demailly. Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials. In Algebraic geometry—Santa Cruz 1995, volume 62 of Proc. Sympos. Pure Math., pages 285–360. Amer. Math. Soc., Providence, RI, 1997.

    Google Scholar 

  6. Olivier Debarre, Gianluca Pacienza, and Mihai Păun. Non-deformability of entire curves in projective hypersurfaces of high degree. Ann. Inst. Fourier (Grenoble), 56(1):247–253, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  7. Jacques Dufresnoy. Théorie nouvelle des familles complexes normales. Applications à l’étude des fonctions algébroïdes. Ann. Sci. École Norm. Sup. (3), 61:1–44, 1944.

    Google Scholar 

  8. Lawrence Ein. Subvarieties of generic complete intersections. Invent. Math., 94(1): 163–169, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  9. Mark Green and Phillip Griffiths. Two applications of algebraic geometry to entire holomorphic mappings. In The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), pages 41–74. Springer, New York, 1980.

    Google Scholar 

  10. Mark L. Green. Holomorphic maps into complex projective space omitting hyperplanes. Trans. Amer. Math. Soc., 169:89–103, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  11. Shoshichi Kobayashi. Hyperbolic manifolds and holomorphic mappings, volume 2 of Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1970.

    Google Scholar 

  12. Steven Shin-Yi Lu and Yoichi Miyaoka. Bounding codimension-one subvarieties and a general inequality between Chern numbers. Amer. J. Math., 119(3):487–502, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  13. Michael McQuillan. Diophantine approximations and foliations. Inst. Hautes Études Sci. Publ. Math., (87):121–174, 1998.

    Google Scholar 

  14. Gianluca Pacienza. Subvarieties of general type on a general projective hypersurface. Trans. Amer. Math. Soc., 356(7):2649–2661 (electronic), 2004.

    Google Scholar 

  15. Gianluca Pacienza and Erwan Rousseau. On the logarithmic Kobayashi conjecture. J. Reine Angew. Math., 611:221–235, 2007.

    MathSciNet  MATH  Google Scholar 

  16. Yum-Tong Siu. Hyperbolicity in complex geometry. In The legacy of Niels Henrik Abel, pages 543–566. Springer, Berlin, 2004.

    Google Scholar 

  17. Claire Voisin. On a conjecture of Clemens on rational curves on hypersurfaces. J. Differential Geom., 44(1):200–213, 1996.

    MathSciNet  MATH  Google Scholar 

  18. Geng Xu. Subvarieties of general hypersurfaces in projective space. J. Differential Geom., 39(1):139–172, 1994.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Diverio, S., Rousseau, E. (2016). Algebraic hyperbolicity. In: Hyperbolicity of Projective Hypersurfaces. IMPA Monographs, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-32315-2_2

Download citation

Publish with us

Policies and ethics