Skip to main content

X-Ray Diffraction of Glycosides

  • Chapter
  • First Online:
  • 770 Accesses

Abstract

X-ray crystallography is a powerful tool for obtaining molecular information regarding bond lengths, bond angles, hydrogen bond interactions, and torsion angles, which are necessary elements for understanding the conformation of glycosides. Improved diffractometers, faster computational processors, and mathematical programs have made possible the structural resolution of simple and complex substances of glycosidic nature particularly those with noncentrosymmetric space groups.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Furberg S, Petersen CS (1962) Crystal and molecular structure of the p-bromophenylhydrazone of arabinose. Acta Chem Scand 16:1539–1548

    Article  CAS  Google Scholar 

  2. Reeves RE (1950) The shape of pyranoside rings. J Am Chem Soc 72:1499–1506

    Article  CAS  Google Scholar 

  3. Jeffrey GA, Pople JA, Binkley JS, Vishveshwara S (1978) Application of ab initio molecular orbital calculations to the structural moieties of carbohydrates. J Am Chem Soc 100:373–379

    Article  CAS  Google Scholar 

  4. Jeffrey GA (1990) Crystallographic studies of carbohydrates. Acta Cryst B46:89–103

    Article  CAS  Google Scholar 

  5. Cremer D, Pople JA (1975) General definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

  6. Brown GM, Levy HA (1963) Sucrose: precise determination of crystal and molecular structure by neutron diffraction. Science 141:921–923

    Article  CAS  Google Scholar 

  7. Leung F, Chanzy HD, Pérez S, Marchessault H (1976) Crystal structure of β-D-acetyl cellobiose, C28H38O19. Can J Chem 54:1365–1371

    Article  CAS  Google Scholar 

  8. Brito-Arias MA, García-Baez EV, Durán-Páramo E, Rojas-Lima S (2002) Phenylmethyl 2,3,4-tri-O-acetyl-β-D-fucopyranoside. J Chem Crystallogr 32:237–241

    Article  CAS  Google Scholar 

  9. Brito-Arias MA, Duran-Paramo E, Mata I, Molins E (2002) A comparative analysis of mono- and disaccharide benzyl fucopyranosides. Acta Cryst C58:o537–o539

    CAS  Google Scholar 

  10. Rencurosi A, Mitchell EP, Cioci G, Péres S, Pereda-Miranda R, Imberty A (2004) Crystal structure of tricolorin A: molecular rationale for the biological properties of resin glycosides found in some Mexican herbal remedies. Angew Chem Int Ed 43:5918–5922

    Article  CAS  Google Scholar 

  11. Matijasic I, Pavlovic G, Trojko R Jr (2003) Methyl 3,6-di-O-pivaloyl-α-D-mannopyranoside. Acta Cryst C59:o184–o186

    CAS  Google Scholar 

  12. Renaudet O, Dumy P, Philouze C (2001) Methyl 2,3,6-tri-O-benzoyl-4-deoxy-4-methoxyamino-α-D-glucopyranoside. Acta Cryst C57:309–310

    CAS  Google Scholar 

  13. Suresh CG, Ravindran B, Rao KN, Pathak T (2000) Comparison of the two anomers of methyl 2-(N-benzylamino)-2,3-dideoxy-4,6-O-phenylmethylene-3-C-phenylsulfonyl-D-glucopyranoside. Acta Cryst C56:1030–1032

    CAS  Google Scholar 

  14. Qiu ZZ, Hui XP, Xu PF (2005) 5-Phenyl-1,3,4-thiadiazol-2-yl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside. Acta Cryst C61:o475–o476

    CAS  Google Scholar 

  15. Low N, Garcia C, Melguizo M, Cobo J, Nogueras M, Sánchez A, López MD, Light ME (2001) A unique axially triacetylated xylopyranose structure, methyl 6-methoxy-2-methyl-1,3-dioxo-4- (2,3,4-tri-O-acetyl-β-D-xylopyranosyl)amino -2,3-dihydro-1H-pyrrolo 3,4-c pyridine-7-carboxylate. Acta Cryst C57:222–224

    CAS  Google Scholar 

  16. Cheng ZH, Wu T, Bligh SWA, Bashall A, Yu BY (2004) cis-Eudesmane sesquiterpene glycosides from Liriope muscari and Ophiopogon japonicus. J Nat Prod 67:1761–1763

    Article  CAS  Google Scholar 

  17. Eriksson L, Stenutz R, Widmalm G (2000) Methyl 4-O-β-L-fucopyranosyl α-D-glucopyranoside hemihydrate. Acta Cryst C56:702–704

    CAS  Google Scholar 

  18. Stenutz R, Shang M, Serianni S (1999) Methyl β-lactoside (methyl 4-O-β-D-galactopyranosyl-β-D-glucopyranoside) methanol solvate. Acta Cryst C55:1719–1721

    CAS  Google Scholar 

  19. Yokohama S, Miyazawa T, Litaka Y, Yamaizumi Z, Kasai H, Nishimura S (1979) Three-dimensional structure of hyper-modified nucleoside Q located in the wobbling position of tRNA. Nature 282:107–109

    Article  Google Scholar 

  20. Seela F, Rosemeyer H, Melenewski A, Heithoff EM, Eickmeier H, Reuter H (2002) The α-D anomer of 5-aza-7-deaza-2′-deoxyguanosine. Acta Cryst C58:o142–o144

    CAS  Google Scholar 

  21. Marquez VE, Ezzitouni A, Russ P, Siddiqui MA, Ford H Jr, Feldman RJ, Mitsuya H, Goerge C, Barchi JJ Jr (1998) HIV-1 reverse transcriptase can discriminate between two conformationally locked carbocyclic AZT triphosphate analogues. J Am Chem Soc 120:2780–2789

    Article  CAS  Google Scholar 

  22. Seela F, Chittepu P, He J, Eickmeier H (2004) 6-Aza-2′-deoxy-2′-arabinofluorouridine, a 2′-deoxyribonucleoside with an N-sugar conformation in the solid state and in solution. Acta Cryst C60:o884–o886

    CAS  Google Scholar 

  23. Seela F, Zhang Y, Xu K, Eickmeier H (2005) 7-Vinyl-8-aza-7-deaza-2′-deoxyadenosine monohydrate. Acta Cryst C61:o60–o062

    CAS  Google Scholar 

  24. Seela F, Xu K, Eickmeier H (2005) 2′-Deoxy-5-fluorotubercidin. Acta Cryst C61:o408–o410

    CAS  Google Scholar 

  25. Lin W, Xu K, Eickmeier H, Seela F (2005) 8-Aza-7-deaza-7-propynyladenosine methanol solvate. Acta Cryst C61:o195–o197

    CAS  Google Scholar 

  26. Seela F, Shaikh KI, Eickmeier H (2005) 7-Deaza-2′-deoxyguanosine. Acta Cryst C61:o151–o153

    CAS  Google Scholar 

  27. Seela F, Sirivolu VR, He J, Eickmeier H (2005) 3-Bromo-1-(2-deoxy-β-D-erythro-pentofuranosyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine: a nucleoside which strongly enhances DNA duplex stability. Acta Cryst C61:o67–o69

    CAS  Google Scholar 

  28. Lin W, Seela F, Eickmeier H, Reuter H (2004) N6-Etheno derivative of 7-deaza-2,8-diazaadenosine. Acta Cryst C60:o566–o568

    CAS  Google Scholar 

  29. Seela F, Shaikh KI, Eickmeier H (2004) 7-Deaza-2′-deoxy-7-propynylguanosine. Acta Cryst C60:o489–o491

    CAS  Google Scholar 

  30. Bats JW, Parsch J, Engels JW (2000) 1-Deoxy-1-(4-fluorophenyl)-β-D-ribofuranose, its hemihydrate, and 1-deoxy-1-(2,4-difluorophenyl)-β-D-ribofuranose: structural evidence for intermolecular C—H⋯F—C interactions. Acta Cryst C56:201–205

    CAS  Google Scholar 

  31. Seela F, Jawalekar AM, Eickmeier H (2004) 1-(2-Deoxy-β-D-erythro-pentofuranosyl)-4-nitro-1H-indazole. Acta Cryst C60:o387–o389

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brito-Arias, M. (2016). X-Ray Diffraction of Glycosides. In: Synthesis and Characterization of Glycosides. Springer, Cham. https://doi.org/10.1007/978-3-319-32310-7_9

Download citation

Publish with us

Policies and ethics