Skip to main content

Nuclear Magnetic Resonance of Glycosides

  • Chapter
  • First Online:

Abstract

Nuclear magnetic resonance (1H, 13C NMR), X-ray diffraction, and mass spectrometry are considered the most important analytical methods for structural elucidation. Characterization by means of 1H, 13C NMR, monodimensional and bidimensional spectroscopy is a powerful tool for structural assignment of simple and complex glycosides. Pioneering studies [1–4, 48–50] on simple monosaccharides were essential for understanding, through the chemical shifts and coupling constants, the conformational behavior of sugars.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lemieux RU, Morgan AR (1965) The preparation and configurations of tri-o-acetyl-α-D-glucopyranose 1,2-(orthoesters). Can J Chem 43:2198–2204

    Article  Google Scholar 

  2. Coxon B (1965) Conformations and proton coupling constants in some methyl 4,6-O-benzylidene-α-D-hexopyranosides. Tetrahedron 21:3481–3503

    Article  CAS  Google Scholar 

  3. Hall LD (1964) Nuclear magnetic resonance. Adv Carbohydr Chem 19:51–59

    CAS  Google Scholar 

  4. Horton D, Lauterbach JH (1975) Specific spectral assignments for acetoxyl-group resonances in proton magnetic resonance spectra of methyl β-D-glucopyranoside tetraacetate. Carbohydr Res 43:9–33

    Article  CAS  Google Scholar 

  5. Altona C, Haasnoot CAG (1980) Prediction of anti and gauche vicinal proton–proton coupling constants in carbohydrates: a simple additivity rule for pyranose rings. Org Magn Reson 13:417–429

    Article  CAS  Google Scholar 

  6. Breitmaier E (2002) Structure elucidation by NMR. I. Organic chemistry, 3rd edn. John Wiley & Sons, New York, NY

    Book  Google Scholar 

  7. Karplus M (1959) Contact electron‐spin coupling of nuclear magnetic moments. J Chem Phys 30:11–15

    Article  CAS  Google Scholar 

  8. Cerda-García-Rojas CM, Zepeda LG, Joseph-Nathan P (1990) A PC program for calculation of dihedral angles from 1H NMR data. Tetrahedron Comput Methodol 3:113–118

    Article  Google Scholar 

  9. Roslund MU, Tahtinen P, Niemitz M, Sjöholm RC (2008) Complete assignments of the H-1 and C-13 chemical shifts and J(H, H) coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohydr Res 343:101–112

    Article  CAS  Google Scholar 

  10. Holland CV, Horton D, Miller MJ, Bhacca NS (1967) Nuclear magnetic resonance studies on acetylated 1-thioaldopyranose derivatives. J Org Chem 32:3077–3086

    Article  CAS  Google Scholar 

  11. Hajdukovic G, Martin ML, Sinaÿ P, Pougny JR (1975) Etudes configurationnelles et conformationnelles de quelques chlorures de désoxy-6 β-L-héxopyrannosyle chlorosulfonyles et de leurs glycosides de méthyle. Org Magn Reson 7:366–371

    Article  CAS  Google Scholar 

  12. Horton D, Turner WN (1965) Conformational and configurational studies on some acetylated aldopyranosyl halides. J Org Chem 30:3387–3394

    Article  Google Scholar 

  13. Bock K, Thøgerson H (1983) Nuclear magnetic resonance spectroscopy in the study of mono- and oligosaccharides. Annu Rep NMR Spectrosc 13:1–57

    Article  Google Scholar 

  14. Duus JØ, Gotffredsen CH, Bock K (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem Rev 100:4589–4614

    Article  CAS  Google Scholar 

  15. Delazar A, Byres M, Gibbons S, Kumarasamy Y, Modarresi M, Nahar L, Shoeb M, Sarker SD (2004) Iridoid glycosides from Eremostachys glabra. J Nat Prod 67:1584–1587

    Article  CAS  Google Scholar 

  16. Bohr G, Gerhäuser C, Knauft J, Zapp J, Becker H (2005) Anti-inflammatory acylphloroglucinol derivatives from Hops (Humulus lupulus). J Nat Prod 68:1545–1548

    Article  CAS  Google Scholar 

  17. Lee SO, Choi SZ, Choi SU, Lee KC, Chin YW, Kim J, Kim YC, Lee KR (2005) Labdane diterpenes from Aster spathulifolius and their cytotoxic effects on human cancer cell lines. J Nat Prod 68:1471–1474

    Article  CAS  Google Scholar 

  18. Zou J-H, Yang JS, Zhou L (2004) Acylated flavone C-glycosides from Trollius Ledebouri. J Nat Prod 67:664–666

    Article  CAS  Google Scholar 

  19. Diaz F, Chai HB, Mi Q, Su BN, Vigo JS, Graham JG, Cabieses F, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2004) Anthrone and oxanthrone C-glycosides from Picramnia latifolia collected in Peru. J Nat Prod 67:352–356

    Article  CAS  Google Scholar 

  20. Manitto P, Monti D, Speranza G (1990) Studies on aloe. Part 6. Conformation and absolute configuration of aloins A and B and related 10-C-glucosyl-9-anthrones. J Chem Soc Perkin 1 1297–1300

    Google Scholar 

  21. Neubauer H, Meiler J, Peti W, Griesinger C (2001) NMR structure determination of saccharose and raffinose by means of homo- and heteronuclear dipolar couplings. Helv Chim Acta 84:243–258

    Article  CAS  Google Scholar 

  22. Tian F, Al-Hashimi HM, Craighead JL, Prestegard JH (2001) Conformational analysis of a flexible oligosaccharide using residual dipolar couplings. J Am Chem Soc 123:485–492

    Article  CAS  Google Scholar 

  23. De Bruyn A (1991) HNMR chemical shift information on the conformation of the glycosidic bond in disaccharides. J Carbohydr Chem 10:159–180

    Article  Google Scholar 

  24. Lemieux RU, Koto S (1974) The conformational properties of glycosidic linkages. Tetrahedron 30:1933–1944

    Article  CAS  Google Scholar 

  25. Bose B, Zhao S, Stenutz R, Cloran F, Bondo PB, Bondo G, Hertz B, Carmichael I, Serianni AS (1998) Three-bond C-O-C-C spin-coupling constants in carbohydrates: development of a Karplus relationship. J Am Chem Soc 120:11158–11173

    Article  CAS  Google Scholar 

  26. Bock K, Brignole A, Sigurskjold BW (1986) Conformational dependence of 13C nuclear magnetic resonance chemical shifts in oligosaccharides. J Chem Soc Perkin II 1711–1713

    Google Scholar 

  27. Tafazzoli M, Ghiasi M (2007) New Karplus equations for 2JHH, 3JHH, 2JCH, 3JCH, 3JCOCH, 3JCSCH, and 3JCCCH in some aldohexopyranoside derivatives as determined using NMR spectroscopy and density functional theory calculations. Carbohydr Res 342:2086–2096

    Article  CAS  Google Scholar 

  28. Imberty A (1997) Oligosaccharide structures: theory versus experiment. Curr Opin Struct Biol 7:617–623

    Article  CAS  Google Scholar 

  29. Agrawal PK, Pathak AK (1996) Nuclear-magnetic-resonance spectroscopic approaches for the determination of interglycosidic linkage and sequence in oligosaccharides. Phytochem Anal 7:113–130

    Article  CAS  Google Scholar 

  30. Tvaroska I, Hricovini M, Petrakova E (1989) An attempt to derive a new Karplus-type equation of vicinal proton-carbon coupling constants for C-O-C-H segments of bonded atoms. Carbohydr Res 189:359–362

    Article  CAS  Google Scholar 

  31. Bae YS, Burger JFW, Steynberg JP, Ferreira D, Heminway RW (1994) Flavan and procyanidin glycosides from the bark of blackjack oak. Phytochemistry 35:473–478

    Article  CAS  Google Scholar 

  32. Batta G, Liptak A (1984) Long-range 1H-1H spin-spin couplings through the interglycosidic oxygen and the primary structure of oligosaccharides as studied by 2D-NMR. J Am Chem Soc 106:248–250

    Article  CAS  Google Scholar 

  33. Prestegard JH, Koerner TAW, Demou PC, Yu RK (1982) Complete analysis of oligosaccharide primary structure using two-dimensional high-field proton NMR. J Am Chem Soc 104:4993–4995

    Article  CAS  Google Scholar 

  34. Duc NM, Kasai R, Ohtani K, Ito A, Nham NT, Yamasaki K, Tanaka O (1994) Saponins from Vietnamese ginseng, Panax vietnamensis Ha et Grushv collected in central Vietnam. III. Chem Pharm Bull 42:634–640

    Article  CAS  Google Scholar 

  35. Bah M, Pereda-Miranda R (1996) Detailed fab mass-spectrometry and high-resolution NMR investigations of tricolorins a-e, individual oligosaccharides from the resins of ipomoea tricolor (convolvulaceae). Tetrahedron 41:13063–13080

    Article  Google Scholar 

  36. Coxon B, Sari N, Batta G, Pozsgay G (2000) NMR spectroscopy, molecular dynamics, and conformation of a synthetic octasaccharide fragment of the O-specific polysaccharide of Shigella dysenteriae type 1. Carbohydr Res 324:53–65

    Article  CAS  Google Scholar 

  37. Sato H, Kajihara Y (2003) Experiment for identification of individual sugar components in oligosaccharides. J Carbohydr Chem 22:339–345

    Article  CAS  Google Scholar 

  38. Vliegenthart FGJ, Dorland L, van Halbeek H (1983) High-resolution, 1H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins. Adv Carbohydr Chem Biochem 41:209–374

    Article  CAS  Google Scholar 

  39. Martin-Lomas M, Chapman D (1973) Structural studies on glycolipids, Part I: 220MHz PMR spectra of acetylated galactocerebroside. Chem Phys Lipids 10:152–164

    Article  CAS  Google Scholar 

  40. Dabrowski J, Handfland P, Egge H (1980) Structural analysis of glycosphinoglipids by high-resolution 1H nuclear magnetic resonance spectroscopy. Biochemistry 19:5652–5658

    Article  CAS  Google Scholar 

  41. Wolfe LS, Senior RG, Ng Yin Kin NMK (1974) The structure of oligosaccharides accumulating in the liver of GMi-gangliosidosis, type-I. J Biol Chem 249:1828–1838

    CAS  Google Scholar 

  42. Ni F (1994) Recent developments in transferred NOE methods. Prog Nucl Magn Reson Spectros 26:517–606

    Article  CAS  Google Scholar 

  43. Peters T, Pinto BM (1996) Structure and dynamics of oligosaccharides: NMR and modeling studies. Curr Opin Struct Biol 6:710–720

    Article  CAS  Google Scholar 

  44. Scheffler K, Ernst B, Katopodis A, Magnani JL, Wang WT, Weisemann R, Peters T (1995) Determination of the bioactive conformation of the carbohydrate ligand in the E-selectin/sialyl LewisX complex. Angew Chem Int Ed 34:1841–1844

    Article  CAS  Google Scholar 

  45. Wyss DF, Choi JS, Wagner G (1995) Composition and sequence specific resonance assignments of the heterogeneous N-linked glycan in the 13.6 kDa adhesion domain of human CD2 as determined by NMR on the intact glycoprotein. Biochemistry 34:1622–1634

    Article  CAS  Google Scholar 

  46. Davies D (1978) Conformations of nucleosides and nucleotides. Prog NMR Spectrosc 12:135–225

    Article  CAS  Google Scholar 

  47. Sorenssen MH, Nielsen C, Nielsen P (2001) Synthesis of a bicyclic analogue of AZT restricted in an unusual O 4′-endo conformation. J Org Chem 66:4878–4886

    Article  Google Scholar 

  48. Lemieux RU, Stevens JD (1965) Substitutional and configurational effects on chemical shift in pyranoid carbohydrate derivatives. Can J Chem 43:2059–2070

    Article  CAS  Google Scholar 

  49. Kotowycz G, Lemieux RU (1973) Nuclear magnetic resonance in carbohydrate chemistry. Chem Rev 73:669–698

    Article  CAS  Google Scholar 

  50. Hall LD, Manville JF, Bhacca NS (1969) Specifically fluorinated carbohydrates. I. Nuclear magnetic resonance studies of hexopyranosyl fluoride derivatives. Can J Chem 47:1–8

    Article  CAS  Google Scholar 

  51. Matsumoto K, Kasai R, Ohtani K, Tanaka O (1990) Minor cucurbitane-glycosides from fruits of Siraitia grosvenori (Cucurbitaceae). Chem Pharm Bull 38:2030–2032

    Article  CAS  Google Scholar 

  52. Sakai S, Katsumata M, Saitoh Y, Nagasao M, Miyakoshi M, Ida Y, Shoji J (1994) Oleanolic acid saponins from root bark of Aralia elata. Phytochemistry 35:1319–1324

    Article  CAS  Google Scholar 

  53. Satoh Y, Sakai S, Katsumata M, Nagasao M, Miyakoshi M, Ida Y, Shoji J (1994) Oleanolic acid saponins from root-bark of Aralia elata. Phytochemistry 36:147–152

    Article  CAS  Google Scholar 

  54. Masiiot G, Lavaud C, Delaude C, Binst GV, Miller SPF, Fales HM (1990) Saponins from Tridesmostemon claessenssi. Phytochemistry 29:3291–3298

    Article  Google Scholar 

  55. Nakamura T, Takeda T, Ogihara Y (1994) Studies on the constituents of Calliandra anomala (Kunth) Macbr. II. Structure elucidation of four acylated triterpenoidal saponins. Chem Pharm Bull 42:1111–1115

    Article  CAS  Google Scholar 

  56. Razanamahefa B, Demetzos C, Skaltsounis AL, Andriantisiferana M, Tillequin F (1994) Structure and synthesis of a quercetin glucoxyloside from Kalanchoe prolifera (Raym.-Hamet). Heterocycles 38:357–373

    Article  CAS  Google Scholar 

  57. Nakanishi T, Tanaka K, Murata H, Somekawa M, Inada A (1994) Phytochemical studies of seeds of medicinal plants. III. Ursolic acid and oleanolic acid glycosides from seeds of Patrinia scabiosaefolia Fischer. Chem Pharm Bull 41:183–186

    Article  Google Scholar 

  58. Thulborg ST, Christensen SB, Cornett C, Olsen CE, Lemmich E (1994) Molluscicidal saponins from a Zimbabwean strain of Phytolacca dodecandra. Phytochemistry 36:753–759

    Article  Google Scholar 

  59. Pereda-Miranda R, Bah M (2003) Biodynamic constituents in the Mexican morning glories: purgative remedies transcending boundaries. Curr Top Med Chem 3:111–131

    Article  CAS  Google Scholar 

  60. Falk KE, Karlsson K-A, Samuelson BE (1997) Proton nuclear magnetic resonance analysis of anomeric structure of glycosphingolipids. The globo-series (one to five sugars). Arch Biochem Biophys 192:164–176

    Article  Google Scholar 

  61. Casset F, Peters T, Etzler M, Korchagina E, Nifantev N, Imberty A (1996) Conformational-analysis of blood-group-a trisaccharide in solution and in the binding site of Dolichos biflorus lectin using transient and transferred nuclear Overhauser enhancement (NOE) and rotating-frame NOE experiments. Eur J Biochem 239:710–719

    Article  CAS  Google Scholar 

  62. Weimar T, Harris SL, Pitnar JB, Bock K, Pinto BM (1995) Transferred nuclear Overhauser enhancement experiments show that the monoclonal antibody strep 9 selects a local minimum conformation of a streptococcus group A trisaccharide-hapten. Biochemistry 34:13672–13681

    Article  CAS  Google Scholar 

  63. Wyss DF, Choi JS, Li J, Knoppers MH, Willis KJ, Arulandaman ARN, Smolyar A, Reinherz EL, Wagner G (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269:1273–1278

    Article  CAS  Google Scholar 

  64. Liang R, Androtti AH, Kahne D (1995) Sensitivity of glycopeptide conformation to carbohydrate chain length. J Am Chem Soc 117:10395–10396

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brito-Arias, M. (2016). Nuclear Magnetic Resonance of Glycosides. In: Synthesis and Characterization of Glycosides. Springer, Cham. https://doi.org/10.1007/978-3-319-32310-7_8

Download citation

Publish with us

Policies and ethics