Skip to main content

Glycoconjugates

  • Chapter
  • First Online:
Synthesis and Characterization of Glycosides

Abstract

Carbohydrates covalently attached to proteins and lipids constitute three types of glycoconjugates: proteoglycans, glycoproteins, and glycolipids. Although in the first two cases the types of linkages are the same, chemically proteoglycans behave as polysaccharides and glycoproteins having much less carbohydrate content as proteins. The third important class of glycoconjugates, where carbohydrate residues are covalently attached to a lipidic component, has been classified into four types depending on the lipidic nature: glycoglycerol, glycosyl polyisoprenol pyrophosphates, fatty acid esters, and glycosphingolipids [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robyt JF (1998) Essentials of carbohydrate chemistry. Springer, New York, NY

    Book  Google Scholar 

  2. Morell A, Irvine RA, Sternliev I, Scheinberg IH, Ashwell G (1968) Physical and chemical studies on ceruloplasmin: V. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J Biol Chem 243:155–159

    CAS  Google Scholar 

  3. Fischer HD, Gonzalez-Noriega A, Sly WS, Morre DJ (1980) Phosphomannosyl-enzyme receptors in rat liver. J Biol Chem 255:9608–9615

    CAS  Google Scholar 

  4. Stahl P, Schlesinger PH, Sigardson E, Rodman J, Lee YC (1980) Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell 19:207–215

    Article  CAS  Google Scholar 

  5. Rudd PM, Elliot T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291:370–376

    Article  Google Scholar 

  6. Reitter IN, Means RE, Desrosiers RC (1998) A role for carbohydrates in immune evasion in AIDS. Nat Med 4:679–684

    Article  CAS  Google Scholar 

  7. Springer GF (1984) T and Tn, general carcinoma autoantigens. Science 224:1198–1206

    Article  CAS  Google Scholar 

  8. Samuel J, Noujaim AA, MacLean GD, Suresh MR, Longenecker BM (1990) Analysis of human tumor associated Thomsen-Friedenreich antigen. Cancer Res 50:4801–4808

    CAS  Google Scholar 

  9. Fukada M (1985) Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells. Biochim Biophys Acta 780:119–150

    Google Scholar 

  10. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  CAS  Google Scholar 

  11. Lee YC (1992) Biochemistry of carbohydrate–protein interaction. FASEB J 6:3193–3200

    CAS  Google Scholar 

  12. Dwek R (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720

    Article  CAS  Google Scholar 

  13. Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674

    Article  CAS  Google Scholar 

  14. Gaastra W, Svennerholm A-M (1996) Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 4:444–452

    Article  CAS  Google Scholar 

  15. Goldstein IJ, Winter HC, Poretz RD (1997) Plant lectins: tools for the study of complex carbohydrates. In: Glycoproteins. Elsevier, Amsterdam, pp 403–474

    Chapter  Google Scholar 

  16. Weis WI, Drickamer K (1996) Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 65:441–473

    Article  CAS  Google Scholar 

  17. Ravishankar R, Ravindran N, Suguna A, Surolia A, Vijayan M (1997) Crystal structure of the peanut lectin-T-antigen complex. Carbohydrate specificity generated by water bridges. Curr Sci 72:855–861

    CAS  Google Scholar 

  18. Sharon N (1993) Lectin-carbohydrate complexes of plants and animals: an atomic view. Trends Biochem Sci 18:221–226

    Article  CAS  Google Scholar 

  19. Sharon N, Lis H (1995) Lectins-proteins with a sweet tooth: functions in cell recognition. Essays Biochem 30:59–75

    CAS  Google Scholar 

  20. Naismith JH, Field RA (1996) Structural basis of trimannoside recognition by concanavalin A. J Biol Chem 271:972–976

    Article  CAS  Google Scholar 

  21. Drickamer K (1988) Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263:9557–9560

    CAS  Google Scholar 

  22. Fukumori F, Takeuchi N, Hagiwara T, Ohbayashi H, Endo T, Kochibe N, Nagata Y, Kobata A (1990) Primary structure of a fucose-specific lectin obtained from a mushroom, Aleuria aurantia. J Biochem 107:190–196

    CAS  Google Scholar 

  23. Lasky LA (1995) Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 64:113–139

    Article  CAS  Google Scholar 

  24. Hemmerich S, Leffler H, Rosen SD (1995) Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J Biol Chem 270:12035–12047

    Article  CAS  Google Scholar 

  25. Kunz H (1987) Synthesis of glycopeptides. Partial structures of biological recognition components. Angew Chem Int Ed 26:294–308

    Article  Google Scholar 

  26. Garg H, Jeanloz RW (1985) Synthetic N- and O-glycosyl derivatives of L-asparagine, L-serine and L-threonine. Adv Carbohydr Chem Biochem 43:135–201

    Article  CAS  Google Scholar 

  27. Kunz H (1993) Glycopeptides of biological interest: a challenge for chemical synthesis. Pure Appl Chem 65:1223–1232

    Article  CAS  Google Scholar 

  28. Kunz H, Unverzagt C (1984) The allyloxycarbonyl (Aloc) moiety-conversion of an unsuitable into a valuable protecting group for peptide synthesis. Angew Chem Int Ed 23:436–437

    Article  Google Scholar 

  29. März J, Kunz H (1992) Synthesis of selectively deprotectable asparagine glycoconjugates with a Lewis A antigen side chain. Synlett 1992:589–590

    Article  Google Scholar 

  30. Wong CH, Schuster M, Wang P, Sears P (1993) Enzymatic synthesis of N- and O-linked glycopeptides. J Am Chem Soc 115:5893–5901

    Article  CAS  Google Scholar 

  31. Mizuno M, Haneda K, Iguchi R, Muramoto I, Kawakami T, Aimoto S, Yamamoto K, Inazu T (1999) Synthesis of a glycopeptide containing oligosaccharides: chemoenzymatic synthesis of eel calcitonin analogues having natural N-linked oligosaccharides. J Am Chem Soc 121:284–290

    Article  CAS  Google Scholar 

  32. Sears P, Wong C-H (2001) Toward automated synthesis of oligosaccharides and glycoproteins. Science 291:2344–2350

    Article  CAS  Google Scholar 

  33. Deshpande PP, Kim HM, Zatorski A, Park TK, Raguphathi G, Livingston PO, Live D, Danishefsky SJ (1998) Strategy in oligosaccharide synthesis: an application to a concise total synthesis of the KH-1(adenocarcinoma) Antigen. J Am Chem Soc 120:1600–1614

    Article  CAS  Google Scholar 

  34. Bertozzi CR, Cook DG, Kobertz WR, Gonzalez-Scarano F, Bednarski MD (1992) Carbon-linked galactosphingolipid analogs bind specifically to HIV-1 gp120. J Am Chem Soc 114:10639–10641

    Article  CAS  Google Scholar 

  35. Obei LM, Linardic CM, Karolak LA, Hannun YA (1993) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. Science 259:1769–1780

    Article  Google Scholar 

  36. Xue J, Shao N, Guo Z (2003) First total synthesis of a GPI-anchored peptide. J Org Chem 68:4020–4029

    Article  CAS  Google Scholar 

  37. Kempin U, Henning L, Knoll D, Welzel P, Müller D, Markus van Heijenoort J (1997) Moenomycin A: new chemistry that allows to attach the antibiotic to reporter groups, solid supports, and proteins. Tetrahedron 53:17669–17690

    Article  CAS  Google Scholar 

  38. Loya S, Reshef V, Mizrachi E, Silbertein C, Rachamim Y, Carmeli S, Hizi A (1998) The inhibition of the reverse transcriptase of HIV-1 by the natural sulfoglycolipids from cyanobacteria: contribution of different moieties to their high potency. J Nat Prod 61:891–895

    Article  CAS  Google Scholar 

  39. Persidis A (1997) The Carbohydrate-based drug industry. Nat Biotechnol 15:479–480

    Article  CAS  Google Scholar 

  40. Buskas T, Li Y, Boons G-J (2004) The immunogenicity of the tumor-associated antigen Lewis(y) may be suppressed by a bifunctional cross-linker required for coupling to a carrier protein. Chem Eur J 10:3517–3524

    Article  CAS  Google Scholar 

  41. Duus JØ, St Hilaire PM, Meldal M, Bock K (1999) Pure Appl Chem 71:755–756

    Article  CAS  Google Scholar 

  42. Davis BG (2002) Synthesis of glycoproteins. Chem Rev 102:579–602

    Article  CAS  Google Scholar 

  43. Bertozzi CR, Kiessling L (2001) Chemical glycobiology. Science 23:2357–2364

    Article  Google Scholar 

  44. Lee YC, Stowell CP, Krantz MJ (1976) 2-Imino-2- methoxyethyl 1- thioglycosides: new reagents for attaching sugars to proteins. Biochemistry 15:3956–3963

    Article  CAS  Google Scholar 

  45. Gray GR (1974) The direct coupling of oligosaccharides to proteins and derivatized gels. Arch Biochem Biophys 163:426–428

    Article  CAS  Google Scholar 

  46. McBroom CR, Samanen CH, Goldstein IJ (1972) Carbohydrate antigens: coupling of carbohydrates to proteins by diazonium and phenyl-isothiocyanate reactions. Methods Enzymol 28:212–219

    Article  Google Scholar 

  47. Buss DH, Goldstein IJ (1968) Protein–carbohydrate interaction. Part XIV. Carbohydrates containing groups for the alkylation of proteins. J Chem Soc C 1457–1461

    Google Scholar 

  48. Quétard C, Bourgerie S, Normand-Sdiqui N, Mayer R, Strecker G, Midoux P, Roche AC, Monsigny M (1998) Novel glycosynthons for glycoconjugate preparation: oligosaccharylpyroglutamylanilide derivatives. Bioconjug Chem 9:268–276

    Article  Google Scholar 

  49. Lemieux RU, Bindle DR, Baker DA (1975) The properties of a “synthetic” antigen related to the human blood-group Lewis a. J Am Chem Soc 97:4076–4083

    Article  CAS  Google Scholar 

  50. Baek WO, Vijayalaksmi MA (1997) Effect of chemical glycosylation of RNase A on the protein stability and surface histidines accessibility in immobilized metal ion affinity electrophoresis (IMAGE) system. Biochim Biophys Acta 1336:394–402

    Article  CAS  Google Scholar 

  51. Jiang KY, Pitiot O, Anissimova M, Adenier H, Vijayalakshmi MA (1999) Structure-function relationship in glycosylated alpha-chymotrypsin as probed by IMAC and IMACE. Biochim Biophys Acta 1433:198–209

    Article  CAS  Google Scholar 

  52. Kamath VP, Diedrich P, Hindsgaul O (1996) Use of diethyl squarate for the coupling of oligosaccharide amines to carrier proteins and characterization of the resulting neoglycoproteins by MALDI-TOF mass spectrometry. Glycoconjug J 13:315–319

    Article  CAS  Google Scholar 

  53. Lemieux GA, Bertozzi CR (1998) Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol 16:506–513

    Article  CAS  Google Scholar 

  54. Cervigni SE, Dumy P, Mutter M (1996) Synthesis of glycopeptides and lipopeptides by chemoselective ligation. Angew Chem Int Ed 35:1230–1232

    Article  CAS  Google Scholar 

  55. Zhao Y, Kent SBH, Chait BT (1997) Rapid, sensitive structure analysis of oligosaccharidcs. Proc Natl Acad Sci U S A 94:1629–1633

    Article  CAS  Google Scholar 

  56. Durieux P, Fernandez-Carneado J, Tuchscherer G (2001) Synthesis of biotinylated glycosulfopeptides by chemoselective ligation. Tetrahedron Lett 42:2297–2299

    Article  CAS  Google Scholar 

  57. Davis NJ, Flitsch SL (1991) A novel method for the specific glycosylation of proteins. Tetrahedron Lett 32:6793–6796

    Article  CAS  Google Scholar 

  58. Marcaurelle LA, Bertozzi CR (2001) Chemoselective elaboration of O-linked glycopeptide mimetics by alkylation of 3thioGalNAc. J Am Chem Soc 123:1587–1595

    Article  CAS  Google Scholar 

  59. Macindoe WM, van Oijen AH, Boons G-J (1998) A unique and highly facile method for synthesising disulfide linked neoglycoconjugates: a new approach for remodelling of peptides and proteins. Chem Commun 847–848

    Google Scholar 

  60. Shin I, Jung H-J, Lee MR (2001) Chemoselective ligation of maleimidosugars to peptides/protein for the preparation of neoglycopeptides/neoglycoprotein. Tetrahedron Lett 42:1325–1328

    Article  CAS  Google Scholar 

  61. Davis BJ, Lloyd RC, Jones JB (1998) Controlled site-selective glycosylation of proteins by a combined site-directed mutagenesis and chemical modification approach. J Org Chem 63:9614–9615

    Article  CAS  Google Scholar 

  62. Davis BG, Maughan MAT, Green MP, Ullman A (2000) Glycomethanethiosulfonates: powerful reagents for protein glycosylation. Tetrahedron Asymmetry 11:245–262

    Article  CAS  Google Scholar 

  63. Davis BG, Lloyd RC, Jones JB (2000) Controlled site-selective protein glycosylation for precise glycan structure-catalytic activity relationships. Bioorg Med Chem 8:1527–1535

    Article  CAS  Google Scholar 

  64. Ullmann V, Rädisch M, Boos I, Freund J, Pöhner C, Schwarzinger S, Unverzagt C (2012) Convergent solid-phase synthesis of N-glycopeptides facilitated by pseudoprolines at consensus-sequence Ser/Thr residues. Angew Chem Int Ed 51:11566–11570

    Article  CAS  Google Scholar 

  65. Pan M, Li S, Li X, Shao F, Liu L, Hu H-G (2014) Synthesis of and specific antibody generation for glycopeptides with arginine N-GlcNAcylation. Angew Chem Int Ed 53:1–6

    Article  Google Scholar 

  66. Paulson JC, Hill RL, Tanabe T, Ashwell G (1977) Reactivation of asialo-rabbit liver binding protein by resialylation with beta-D-galactoside alpha2 leads to 6 sialyltransferase. J Biol Chem 252:8624–8628

    CAS  Google Scholar 

  67. Tsuboi S, Isogai Y, Hada N, King JK, Hindsgaul O, Fukuda M (1996) 6′-Sulfo sialyl Lex but not 6-sulfo sialyl Lex expressed on the cell surface supports L-selectin-mediated adhesion. J Biol Chem 271:27213–27216

    Article  CAS  Google Scholar 

  68. Unversagt C (1997) Building blocks for glycoproteins: synthesis of the ribonuclease B fragment 21–25 containing an undecasaccharide N-glycan. Tetrahedron Lett 32:5627–5630

    Article  Google Scholar 

  69. Geremia RA, Petroni A, Ielpi L, Herissat B (1996) Towards a classification of glycosyltransferases based on amino acid sequence similarities: prokaryotic α-mannosyltransferases. Biochem J 318:133–138

    Article  CAS  Google Scholar 

  70. Friedman B, Hubbard SC, Rasmussen JR (1993) Development of a recombinant form of Ceredase (Glucocerebrosidase) for the treatment of Gaucher’s disease. Glycoconjug J 10:257

    Article  Google Scholar 

  71. Witte K, Sears P, Martin R, Wong CH (1997) Enzymatic glycoprotein synthesis: preparation of ribonuclease glycoforms via enzymatic glycopeptide condensation and glycosylation. J Am Chem Soc 119:2114–2118

    Article  CAS  Google Scholar 

  72. Kochendoerfer GG, Kent SBH (1999) Chemical protein synthesis. Curr Opin Chem Biol 3:665–671

    Article  CAS  Google Scholar 

  73. Wong CH (2005) Protein glycosylation: new challenges and opportunities. J Org Chem 70:4219–4225

    Article  CAS  Google Scholar 

  74. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771

    Article  CAS  Google Scholar 

  75. Stallforth P, Adibekian A, Seeberger PH (2008) De novo synthesis of a d-galacturonic acid thioglycoside as key to the total synthesis of a glycosphingolipid from Sphingomonas yanoikuyae. Org Lett 10:1573–1576

    Article  CAS  Google Scholar 

  76. Altiti AS, Mootoo DR (2014) Intramolecular nitrogen delivery for the synthesis of C-glycosphingolipids. Application to the C-glycoside of the immunostimulant KRN7000. Org Lett 16:1466–1469

    Article  CAS  Google Scholar 

  77. Sarpe VA, Kulkarni S (2014) Expeditious synthesis of mycobacterium tuberculosis sulfolipids SL-1 and Ac2SGL analogues. Org Lett 16:5732–5735

    Article  CAS  Google Scholar 

  78. Tamai H, Ando H, Ishida H, Kiso M (2012) First synthesis of a pentasaccharide moiety of ganglioside GAA-7 containing unusually modified sialic acids through the use of N-Troc-sialic acid derivative as a key unit. Org Lett 14:6342–6345

    Article  CAS  Google Scholar 

  79. Liu Y, Ruan X, Li X, Li Y (2008) Efficient synthesis of a sialic acid α(2 → 3)galactose building block and its application to the synthesis of ganglioside GM3. J Org Chem 73:4287–4290

    Article  CAS  Google Scholar 

  80. Miller N, Williams GM, Brimble MA (2009) Synthesis of fish antifreeze neoglycopeptides using microwave-assisted “Click Chemistry”. Org Lett 11:2409–2412

    Article  CAS  Google Scholar 

  81. Singhamahapatra A, Sahoo L, Loganathan D (2013) Clickable glycopeptoids for synthesis of glycopeptide mimic. J Org Chem 78:10329–10336

    Article  CAS  Google Scholar 

  82. Seo J, Michaelian N, Owens SC, Dashner ST, Wong AJ, Barron AE, Carrasco MR (2009) Chemoselective and microwave-assisted synthesis of glycopeptoids. Org Lett 11:5210–5213

    Article  CAS  Google Scholar 

  83. Wu Z, Guo X, Gu G, Guo Z (2013) Chemoenzymatic synthesis of the human CD52 and CD24 antigen analogues. Org Lett 15:5906–5908

    Article  CAS  Google Scholar 

  84. Lee DJ, Mandal K, Harris PW, Brimble MA, Kent SBH (2009) A one-pot approach to neoglycopeptides using orthogonal native chemical ligation and click chemistry. Org Lett 11:5270–5273

    Article  CAS  Google Scholar 

  85. Joseph R, Brock Dyer FB, Garner P (2013) Rapid formation of N-glycopeptides via Cu(II)-promoted glycosylative ligation. Org Lett 15:732–735

    Article  CAS  Google Scholar 

  86. Corcilius L, Payne RJ (2013) Stereoselective synthesis of sialylated tumor-associated glycosylamino acids. Org Lett 15:5794–5797

    Article  CAS  Google Scholar 

  87. Khan SN, Kim A, Grubbs RH, Kwon Y-U (2012) Cross metathesis assisted solid-phase synthesis of glycopeptoids. Org Lett 14:2952–2955

    Article  CAS  Google Scholar 

  88. Verez-Bencomo V et al (2004) A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae Type b. Science 305:522–525

    Article  CAS  Google Scholar 

  89. Danishefsky SJ, Allen JR (2000) From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angew Chem Int Ed 39:836–863

    Article  CAS  Google Scholar 

  90. Seeberger PH, Soucy RL, Kwon YU, Snyder DA, Konemitsu T (2004) A convergent, versatile route to two synthetic conjugate anti-toxin malaria vaccines. Chem Commun 1706–1707

    Google Scholar 

  91. Bay S, Huteau V, Zarantonelli M-L, Pires R, Ughetto-Monfrin J, Taha M-K, England P, Lafaye P (2004) Phosphorylcholine–carbohydrate–protein conjugates efficiently induce hapten-specific antibodies which recognize both streptococcus pneumoniae and neisseria meningitidis: a potential multitarget vaccine against respiratory infections. J Med Chem 47:3916–3919

    Article  CAS  Google Scholar 

  92. Gaidzik N, Kaiser A, Kowalczyk D, Westerlind U, Gerlitzki B, Sinn HP, Schmitt E, Kunz H (2011) Synthetic antitumor vaccines containing MUC1 glycopeptides with two immunodominant domains—induction of a strong immune response against breast tumor tissues. Angew Chem Int Ed 50:9977–9981

    Article  CAS  Google Scholar 

  93. Hirano K, Macmillan D, Tezuka K, Tsuji T, Kajihara Y (2009) Design and synthesis of a homogeneous erythropoietin analogue with two human complex-type sialyloligosaccharides: combined use of chemical and bacterial protein expression methods. Angew Chem Int Ed 48:9557–9560

    Article  CAS  Google Scholar 

  94. Murakami M, Okamoto R, Izumi M, Kajihara Y (2012) Chemical synthesis of an erythropoietin glycoform containing a complex-type disialyloligosaccharide. Angew Chem Int Ed 51:3567–3572

    Article  CAS  Google Scholar 

  95. Li S, Zhang L, Yao Q, Li L, Dong N, Rong J, Gao W, Ding X, Sun L, Chen X, Shao F (2013) Nature 501:242–246

    Article  CAS  Google Scholar 

  96. Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M, Robinson KS, Lung TW, Mansell A, Riedmaier P, Oates CV, Zaid A, Mühlen S, Crepin VF, Marches O, Ang CS, Williamson NA, O’Reilly LA, Bankovacki A, Nachbur U, Infusini G, Webb AI, Silke J, Strasser A, Frankel G, Hartland EL (2013) Nature 501:247–251

    Article  CAS  Google Scholar 

  97. Asahina Y, Komiya S, Ohagi A, Fujimoto R, Tamagaki H, Nakagawa K, Sato T, Akira S, Takao T, Ishii A, Nakahara Y, Hojo H (2015) Chemical synthesis of O-glycosylated human interleukin-2 by the reverse polarity protection strategy. Angew Chem Int Ed 54:8226–8230

    Article  CAS  Google Scholar 

  98. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  Google Scholar 

  99. Bernardes GJL, Grayson EJ, Thompson S, Chalker JM, Errey J, Oualid FE, Claridge TDW, Davis BG (2008) From disulfide- to thioether-linked glycoproteins. Angew Chem Int Ed 47:2244–2247

    Article  CAS  Google Scholar 

  100. Wittrock S, Becker T, Kunz H (2007) Synthetic vaccines of tumor-associated glycopeptide antigens by immune-compatible thioether linkage to bovine serum albumin. Angew Chem Int Ed 46:5226–5230

    Article  CAS  Google Scholar 

  101. Ficht S, Payne RJ, Brik A, Wong C-H (2007) Second-generation sugar-assisted ligation: a method for the synthesis of cysteine-containing glycopeptides. Angew Chem Int Ed 46:5975–5979

    Article  CAS  Google Scholar 

  102. Okamoto R, Kajihara Y (2008) Uncovering a latent ligation site for glycopeptide synthesis. Angew Chem Int Ed 47:5402–5406

    Article  CAS  Google Scholar 

  103. Piontek C, Varón Silva D, Heinlein C, Pöhner C, Mezzato S, Ring P, Martin A, Schmid FX, Unverzagt C (2009) Semisynthesis of a homogeneous glycoprotein enzyme: ribonuclease C: Part 2. Angew Chem Int Ed 48:1941–1945

    Article  CAS  Google Scholar 

  104. Yang B, Dr Yoshida K, Yin Z, Dai H, Kavunja H, El-Dakdouki MH, Sungsuwan S, Dulaney SB, Huang X (2012) Chemical synthesis of a heparan sulfate glycopeptide: syndecan-1. Angew Chem Int Ed 51:10185–10189

    Article  CAS  Google Scholar 

  105. Nuhn L, Hartmann S, Palitzsch B, Gerlitzki B, Schmitt E, Zentel R, Kunz H (2013) Water-soluble polymers coupled with glycopeptide antigens and T-cell epitopes as potential antitumor vaccines. Angew Chem Int Ed 52:10652–10656

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brito-Arias, M. (2016). Glycoconjugates. In: Synthesis and Characterization of Glycosides. Springer, Cham. https://doi.org/10.1007/978-3-319-32310-7_6

Download citation

Publish with us

Policies and ethics