Skip to main content

Nucleoside Mimetics

  • Chapter
  • First Online:
Synthesis and Characterization of Glycosides
  • 807 Accesses

Abstract

Modified nucleosides are useful therapeutic agents being currently used as antitumor, antiviral, and antibiotic agents. Despite the fact that a significant variety of modified nucleosides display potent and selective action against cancer, viral and microbial diseases, the challenge still attracts full attention since most of them do not discriminate between normal and tumor cell and in viral infections resistant strains usually appear during the course of the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitsuya H, Yarchoan R, Broder S (1990) Molecular targets for AIDS therapy. Science 249:1533–1544

    Article  CAS  Google Scholar 

  2. Huryn DM, Okabe M (1992) AIDS-driven nucleoside chemistry. Chem Rev 92:1745–1768

    Article  CAS  Google Scholar 

  3. Mitsuya H, Broder S (1986) Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2′,3′-dideoxynucleosides. Proc Natl Acad Sci U S A 83:1911–1915

    Article  CAS  Google Scholar 

  4. Simons C (2001) Nucleoside mimetics: their chemistry and biological properties. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  5. Agrofolio LA, Guillaizeau I, Saito Y (2003) Palladium-assisted routes to nucleosides. Chem Rev 103:1875–1916

    Article  CAS  Google Scholar 

  6. Crisp G, Flynn BL (1993) Palladium-catalyzed coupling of terminal alkynes with 5-(trifluoromethanesulfonyloxy) pyrimidine nucleosides. J Org Chem 58:6614–6619

    Article  CAS  Google Scholar 

  7. Mansur TS, Evans CA, Charron M, Korba BE (1997) Discovery of imidazol[1,2-c]pyrimidin-5(6h)-one heterosubstituted nucleoside analogs with potent activity against human hepatitis-b virus in-vitro. Bioorg Med Chem Lett 7:303–308

    Article  Google Scholar 

  8. Farina V, Hauck SI (1991) Palladium-catalyzed approach to 5-substituted uracil and uridine derivatives. Synlett 1991:157–159

    Article  Google Scholar 

  9. Rahim SG, Trivedi N, Bogunovic-Batchelor MV, Hardy GW, Mills G, Selway JW, Snowden W, Littler E, Coe PL, Basnak I, Whale RF, Walker RT (1996) Synthesis and anti-herpes virus activity of 2′-deoxy-4′-thiopyrimidine nucleosides. J Med Chem 39:789–795

    Article  CAS  Google Scholar 

  10. Heck RF (1968) Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J Am Chem Soc 90:5518–5526

    Article  CAS  Google Scholar 

  11. Hanamoto T, Kobayashi T, Kondo M (2001) Fluoride ion-assisted cross-coupling reactions of (alpha-fluorovinyl)diphenylmethylsilane with aryl iodides catalyzed by Pd(0)/Cu(I) systems. Synlett 2001:281–283

    Article  Google Scholar 

  12. Palmisano G, Santagostino M (1993) Base-modified pyrimidine nucleosides. Efficient entry to 6-derivatized uridines by sn-pd transmetallation-coupling process. Tetrahedron 49:2533–2542

    Article  CAS  Google Scholar 

  13. Lister JH (1971) Fused pyrimidines. Part II Purines. In: Weissberger A, Taylor EC (eds) The chemistry of heterocyclic compounds, vol 24. New York, NY, Wiley Interscience

    Chapter  Google Scholar 

  14. Shaw G (1984) Purines. In: Comprehensive heterocycle chemistry, vol 5. Pergamon, Oxford, pp 499–605

    Chapter  Google Scholar 

  15. Hocek M (2003) Syntheses of purines bearing carbon substituents in positions 2, 6 or 8 by metal- or organometal-mediated C–C bond-forming reactions. Eur J Org Chem 2003:245–254

    Article  Google Scholar 

  16. Nair V, Chamberlain SD (1985) Novel photoinduced carbon-carbon bond formation in purines. J Am Chem Soc 107:2183–2185

    Article  CAS  Google Scholar 

  17. Nair V, Young D (1984) Synthetic transformations of transient purinyl radicals: formation of mono- and diarylated and heteroarylated nucleosides. J Org Chem 49:4340–4344

    Article  CAS  Google Scholar 

  18. Tanji K, Higashino T (1990) Purines. IX. Reaction of 9-phenyl-9H-purine-2-carbonitriles with grignard reagents. Heterocycles 30:435–440

    Article  CAS  Google Scholar 

  19. Vorbrügen H, Krolikiewicz K (1976) C-substitution of nucleosides with the aid of the eschenmoser sulfide contraction. Angew Chem Int Ed 15:689–690

    Article  Google Scholar 

  20. Taylor EC, Martin SF (1974) A general method of alkylation and alkenylation heterocycles. J Am Chem Soc 96:8095–8102

    Article  CAS  Google Scholar 

  21. Mornet R, Leonard NJ, Theiler M, Doree M (1984) Specificity of the 1-methyladenine receptors in starfish oocytes: synthesis and properties of some 1,8-disubstituted adenines, 1,6-dimethyl-1H-purine, and of the 1-(azidobenzyl)adenines. J Chem Soc Perkin 1 879-885

    Google Scholar 

  22. McKenzie TC, Glass D (1987) The reaction of 6-halopurines with phenyl metal complexes. J Heterocycl Chem 24:1551–1553

    Article  CAS  Google Scholar 

  23. Nguyen CD, Beaucourt L, Pichat L (1979) Modification de la position 8 des purines nucleosides et de l’adenosine monophosphate cyclique-3′,5′. Reactions de couplage catalytique des organo-magnesiens avec les bromo-8 purines ribosides et bromo-8 adenosine monophosphate cyclique-3′,5′ silyles en presence de dichloro-bis-triphenylphosphine palladium. Tetrahedron Lett 20:3159–3162

    Article  Google Scholar 

  24. Hirota K, Kitade Y, Kanbe Y, Maki Y (1992) Convenient method for the synthesis of C-alkylated purine nucleosides(palladium-catalyzed cross-coupling reaction of halogenopurine nucleosides with trialkylaluminums). J Org Chem 57:5268–5270

    Article  CAS  Google Scholar 

  25. Dvořáková H, Dvořák D, Holý A (1996) Coupling of 6-chloropurines with organocuprates derived from grignard-reagents - a convenient route to sec and tert 6-alkylpurines. Tetrahedron Lett 37:1285–1288

    Article  Google Scholar 

  26. Gundersen LL, Bakkestuen AK, Aasen AJ, Øveras H, Rise F (1994) 6-Halopurines in palladium-catalyzed coupling with organotin and organozinc reagents. Tetrahedron 50:9743–9756

    Article  CAS  Google Scholar 

  27. Van Aerschot AA, Mamos P, Weyns NJ, Ikeda S, Clercq E, Herdewijn P (1993) Antiviral activity of C-alkylated purine nucleosides obtained by cross-coupling with tetraalkyltin reagents. J Med Chem 36:2938–2942

    Article  Google Scholar 

  28. Vottori S, Camaioni E, Di Francesco E, Volpini R, Monopoli A, Dionisotti S, Ongini E, Cristalli G (1996) 2-alkenyl and 2-alkyl derivatives of adenosine and adenosine-5′-N-ethyluronamide: different affinity and selectivity of E- and Z-diastereomers at A2A adenosine receptors. J Med Chem 39:4211–4217

    Article  Google Scholar 

  29. Edstrom E, Wei Y (1995) A new synthetic route to beta-2′-deoxyribosyl-5-substituted pyrrolo[2,3-d]pyrimidines. Synthesis of 2′-deoxycadeguomycin. J Org Chem 60:5069–5076

    Article  CAS  Google Scholar 

  30. Balzarini J, Kang GJ, Dalal M, Herdeweijn P, De Clercq E, Broder S, Johns DG (1987) The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2′,3′-didehydro-2′,3′-dideoxyribonucleosides: a comparison with their parental 2′,3′-dideoxyribonucleosides. Mol Pharmacol 32:162–167

    CAS  Google Scholar 

  31. Hamamoto Y, Nakashima H, Matsui T, Matsuda A, Ueda T, Yamamoto N (1997) Inhibitory effect of 2′,3′-didehydro-2′,3′-dideoxynucleosides on infectivity, cytopathic effects, and replication of human immunodeficiency virus. Antimicrob Agents Chemother 31:907–910

    Article  Google Scholar 

  32. Manchand PS, Belica PS, Holman MJ, Huang TN, Maehr H, Tam SYK, Yang T (1992) Syntheses of the anti-AIDS drug 2′,3′-dideoxycytidine from cytidine. J Org Chem 57:3473–3478

    Article  CAS  Google Scholar 

  33. Robins MJ, Hansske F, Low NW, Park JI (1984) A mild conversion of vicinal diols to alkenes. Efficient transformation of ribonucleosides into 2′-ene and 2′,3′-dideoxynucleosides. Tetrahedron Lett 25:367–370

    Article  CAS  Google Scholar 

  34. Lin T-S, Luo MZ, Liu M-C, Zhu Y-L, Gullen E, Dutschman EG, Cheng Y-C (1996) Design and synthesis of 2′,3′-dideoxy-2′,3′-didehydro-beta-L-cytidine (beta-L-d4C) and 2′,3′-dideoxy 2′,3′-didehydro-beta-L-5-fluorocytidine (beta-L-Fd4C), two exceptionally potent inhibitors of human hepatitis B virus (HBV) and potent inhibitors of human immunodeficiency virus (HIV) in vitro. J Med Chem 39:1757–1759

    Article  CAS  Google Scholar 

  35. Corey EJ, Winter RAE (1963) A new, stereospecific olefin synthesis from 1,2-diols. J Am Chem Soc 85:2677–2678

    Article  CAS  Google Scholar 

  36. Dudycz LW (1989) Synthesis of 2′,3′-dideoxyuridine via the Corey-Winter reaction. Nucleosides Nucleotides 8:35–41

    Article  CAS  Google Scholar 

  37. Corey EJ, Hopkins PB (1982) A mild procedure for the conversion of 1,2-diols to olefins. Tetrahedron Lett 23:1979–1982

    Article  CAS  Google Scholar 

  38. Mansuri MM, Starrett JE, Wos JA, Tortolani DR, Brodfuerhrer PR, Howell HG, Martin JC (1989) Preparation of 1-(2,3-dideoxy-.beta.-D-glycero-pent-2-enofuranosyl)thymine (d4T) and 2′,3′-dideoxyadenosine (ddA): general methods for the synthesis of 2′,3′-olefinic and 2′,3′-dideoxy nucleoside analogs active against HIV. J Org Chem 54:4780–4785

    Article  CAS  Google Scholar 

  39. Shiragami H, Irie Y, Yokozeki H, Yasuda N (1988) Synthesis of 2′,3′-dideoxyuridine via deoxygenation of 2′,3′-O-(methoxymethylene)uridine. J Org Chem 53:5170–5173

    Article  CAS  Google Scholar 

  40. Rosowsky A, Solan VC, Sodroski JG, Ruprecht RM (1989) Synthesis of the 2-chloro analogs of 3′-deoxyadenosine, 2′,3′-dideoxyadenosine, and 2′,3′-didehydro-2′,3′-dideoxyadenosine as potential antiviral agents. J Med Chem 32:1135–1140

    Article  CAS  Google Scholar 

  41. Kim CH, Marquez VE, Broder S, Mitsuya H, Driscoll JS (1987) Potential anti-AIDS drugs. 2′,3′-dideoxycytidine analogs. J Med Chem 30:862–866

    Article  CAS  Google Scholar 

  42. Barton DHR, Jang DO, Jaszberenyi JC (1991) Towards dideoxynucleosides: the silicon approach. Tetrahedron Lett 32:2569–2572

    Article  CAS  Google Scholar 

  43. Chu C, Bhadti UT, Doboszowski B, Gu ZP, Kosugi Y, Pullaiah KC, Van Roey P (1989) General syntheses of 2′,3′-dideoxynucleosides and 2′,3′-didehydro-2′,3′-dideoxynucleosides. J Org Chem 54:2217–2225

    Article  CAS  Google Scholar 

  44. Fleet GWJ, Son JC, Derome AE (1988) Tetrahedron, Methyl 5-0-tert-butyldiphenylsilyl-2-deoxy-α β -d-threo-pentofuranoside as a divergent intermediate for the synthesis of 3′-substituted-2′,3′-dideoxynucleosides: synthesis of 3′-azido-3′-deoxythymidine, 3′-deoxy-3′-fluorothymidine and 3′-cyano-3′-deoxythymidine. Tetrahedron 44:625–636

    Article  CAS  Google Scholar 

  45. Zhou W, Gumina G, Chong Y, Wang J, Schinazi RF, Chu CK (2004) Synthesis, structure–activity relationships, and drug resistance of β-d-3′-Fluoro-2′,3′-unsaturated nucleosides as anti-HIV agents. J Med Chem 47:3399–3408

    Article  CAS  Google Scholar 

  46. Hansske F, Robins MJ (1983) Nucleic acid related compounds. 45. A deoxygenative [1,2]-hydride shift rearrangement converting cyclic cis-diol monotosylates to inverted secondary alcohols. J Am Chem Soc 105:6736–6737

    Article  CAS  Google Scholar 

  47. Motawia MS, Wendel J, Abdel-Megid AES, Pedersen EB (1989) A convenient route to 3′-amino-3′-deoxythymidine. Synthesis 1989:384–387

    Article  Google Scholar 

  48. Svansson L, Kvarnström I, Classon B, Samuelson B (1991) Synthesis of 2′,3′-dideoxy-3′-C-hydroxymethyl nucleosides as potential inhibitors of HIV. J Org Chem 56:2993–2997

    Article  CAS  Google Scholar 

  49. Okabe M, Sun RC, Tam SYK, Todaro LJ, Coffen DL (1988) Synthesis of the dideoxynucleosides “ddC” and “CNT” from glutamic acid, ribonolactone, and pyrimidine bases. J Org Chem 53:4780–4786

    Article  CAS  Google Scholar 

  50. Chu CK, Beach JW, Ullas GV, Kosugi Y (1988) An efficient total synthesis of 3′-azido-3′-deoxythymidine (AZT) and 3′-azido-2′,3′-dideoxyuridine (AZDDU, CS-87) from D-mannitol. Tetrahedron Lett 29:5349–5352

    Article  CAS  Google Scholar 

  51. Lavallée JF, Just G (1991) Asymmetric synthesis of 3′-carbomethoxymethyl 3′-deoxythymidine via radical cyclization. Tetrahedron Lett 32:3469–3472

    Article  Google Scholar 

  52. Horwitz JP, Chua J, Noel M (1964) Nucleosides. V. The monomesylates of 1-(2′-deoxy-β-D-lyxofuranosyl)thymine. J Org Chem 29:2076–2078

    Article  CAS  Google Scholar 

  53. Rideout JL, Barry DW, Lehman SN, St. Clair MH, Furman PA, Freeman GA (1987) E.P. 3,608,606; Chem Abst 106: P38480b

    Google Scholar 

  54. Zaitseva VE, Dyatkina NB, Krayavskii AA, Skaptsova NV, Turina OV, Gnuchev NV, Gottikh BP, Azhaev AV (1984) Aminonucleosides and their derivatives. Bioorg Khim 10:670–680

    CAS  Google Scholar 

  55. Wilson JD, Almond MR, Rideout JL (1989) E.P. 295,090; Chem Abst 111: P23914a

    Google Scholar 

  56. Jung ME, Gardiner JM (1991) Synthetic approaches to 3′-azido-3′-deoxythymidine and other modified nucleosides. J Org Chem 113:2614–2615

    Article  Google Scholar 

  57. Hager MW, Liotta DC (1991) Cyclization protocols for controlling the glycosidic stereochemistry of nucleosides. Application to the synthesis of the antiviral agent 3′-azido-3′-deoxythymidine (AZT). J Am Chem Soc 113:5117–5119

    Article  CAS  Google Scholar 

  58. Freeman GA, Shauer SR, Rideout JL, Short SA (1995) 2-amino-9-(3-azido-2,3-dideoxy-β-d-erythro-pentofuranosyl)-6-substituted-9H-purines: synthesis and anti-HIV activity. Bioorg Med Chem 3:447–458

    Article  CAS  Google Scholar 

  59. Barai VN, Zinchenko AI, Eroshevskaya LA, Zhernosek EV, Balzarini J, De Clercq E, Mikhailopulo IA (2003) Chemo-enzymatic synthesis of 3-deoxy-β-D-ribofuranosyl purines and study of their biological properties. Nucleosides Nucleotides Nucleic Acids 22:751–753

    Article  CAS  Google Scholar 

  60. Izawa K, Takamatsu S, Katayama S, Hirose N, Kosai S, Maruyama T (2003) An industrial process for synthesizing lodenosine (FddA). Nucleosides Nucleotides Nucleic Acids 22:507–517

    Article  CAS  Google Scholar 

  61. Haraguchi K, Takeda S, Tanaka H (2003) Ring opening of 4′,5′-epoxynucleosides: a novel stereoselective entry to 4′-C-branched nucleosides. Org Lett 5:1399–1402

    Article  CAS  Google Scholar 

  62. Ohrui H, Kohgo S, Kitano K, Sakata S, Kodama E, Yoshimura K, Matsuoka M, Shigeta S, Mitsuya H (2000) Syntheses of 4′-C-ethynyl-β-d-arabino- and 4′-C-ethynyl-2′-deoxy-β-d-ribo-pentofuranosylpyrimidines and -purines and evaluation of their anti-HIV activity. J Med Chem 43:4516–4525

    Article  CAS  Google Scholar 

  63. Kondo T, Ohgi T, Goto T (1983) Synthesis of q base (queuine). Chem Lett 419–422

    Google Scholar 

  64. Akimoto H, Imamiya E, Hitaka T, Nomura H (1988) Synthesis of queuine, the base of naturally occurring hypermodified nucleoside (queuosine), and its analogues. J Chem Soc Perkin 1 1637–1644

    Google Scholar 

  65. Barnett CJ, Grubb LM (2000) Total synthesis of Q base (Queuine). Tetrahedron 56:9221–9225

    Article  CAS  Google Scholar 

  66. Knapp S, Nandan SR (1994) Synthesis of capuramycin. J Org Chem 59:281–283

    Article  CAS  Google Scholar 

  67. Kurosu M, Li K, Crick DC (2009) Concise synthesis of capuramycin. Org Lett 11:2393–2396

    Article  CAS  Google Scholar 

  68. Hotoda H, Daigo M, Takatsu T, Muramatsu A, Kaneko M (2000) Novel intramolecular radical Ar-C glycosylation-lactonization reaction in the transformation of capuramycin. Heterocycles 52:133–136

    Article  CAS  Google Scholar 

  69. Myers AG, Gin DY, Rogers DH (1994) Synthetic studies of the tunicamycin antibiotics. Preparation of (+)-tunicaminyluracil, (+)-tunicamycin-V, and 5′-epi-tunicamycin-V. J Am Chem Soc 116:4697–4718

    Article  CAS  Google Scholar 

  70. Li J, Yu B (2015) A modular approach to the total synthesis of tunicamycins. Angew Chem Int Ed 54:6618–6621

    Article  CAS  Google Scholar 

  71. McGwigan C, Barucki H, Blewett S, Caragio A, Erichsen G, Andrei G, Snoock R, De Clercq E, Balzarini J (2000) Highly potent and selective inhibition of varicella-zoster virus by bicyclic furopyrimidine nucleosides bearing an aryl side chain. J Med Chem 43:4993–4997

    Article  CAS  Google Scholar 

  72. Porcari AR, Towsend LB (2004) An improved total synthesis of triciribine: a tricyclic nucleoside with antineoplastic and antiviral properties. Nucleosides Nucleotides Nucleic Acids 23:31–39

    Article  CAS  Google Scholar 

  73. Hannesian S, Pernet AG (1976) Synthesis of naturally occurring C-nucleosides, their analogs, and functionalized C-glycosyl precursors. Adv Carbohydr Chem Biochem 33:111–188

    Article  Google Scholar 

  74. De las Heras F, Tam SY, Klein RS, Fox JJ (1976) Nucleosides. XCIV. Synthesis of some C-nucleosides by 1,3-dipolar cycloadditions to 3-(ribofuranosyl) propiolates. J Org Chem 41:84–90

    Article  Google Scholar 

  75. Bobek M, Farkas J, Sorm F (1969) Nucleic acid components and their analogues. CXXIV. Synthesis of 5-β-D-ribofuranosyl-6-azauracil (6-azapseudouridine). Collect Czech Chem Commun 34:1690–1695

    Article  CAS  Google Scholar 

  76. Asbun WA, Binkley SB (1968) Synthesis of 5-substituted pyrimidines. II. J Org Chem 33:140–142

    Article  CAS  Google Scholar 

  77. Sriswastava PC, Pickering MV, Allen LB, Streeter DG, Campbell MT, Witkowski JT, Sidwell RW, Robins RK (1977) Synthesis and antiviral activity of certain thiazole C-nucleosides. J Med Chem 20:256–262

    Article  Google Scholar 

  78. Ramasamy KS, Bandaru R, Averett D (2000) A new synthetic methodology for tiazofurin. J Org Chem 65:5849–5851

    Article  CAS  Google Scholar 

  79. Trummlitz G, Moffat JG (1973) C-Glycosyl nucleosides. III. Facile synthesis of the nucleoside antibiotic showdomycin. J Org Chem 38:1841–1845

    Article  CAS  Google Scholar 

  80. Von Krosigk U, Benner SA (2004) Expanding the genetic alphabet: pyrazine nucleosides that support a donor[bond]donor[bond]acceptor hydrogen-bonding pattern. Helv Chim Acta 87:1299–1324

    Article  Google Scholar 

  81. Zhang HC, Daves GD Jr (1992) Syntheses of 2′-deoxypseudouridine, 2′-deoxyformycin B, and 2′,3′-dideoxyformycin B by palladium-mediated glycal-aglycon coupling. J Org Chem 57:4690–4696

    Article  CAS  Google Scholar 

  82. Kim G, Kim HS (2000) C-Glycosylation via radical cyclization: synthetic application to a new C-glycoside. Tetrahedron Lett 41:225–227

    Article  CAS  Google Scholar 

  83. Chen JJ, Drach JC, Towsend LB (2003) Convergent synthesis of polyhalogenated quinoline C-nucleosides as potential antiviral agents. J Org Chem 68:4170–4178

    Article  CAS  Google Scholar 

  84. Hannessian S, Marcotte S, Machaalani S, Huang G (2003) Total synthesis and structural confirmation of malayamycin A: a novel bicyclic C-nucleoside from streptomyces malaysiensis. Org Lett 5:4277–4280

    Article  CAS  Google Scholar 

  85. Yokamatsu T, Salto M, Abe H, Suemune K, Matsumoto K, Kihara T, Soeda S, Shimeno H, Shibuya S (1997) Synthesis of (2′S,3′S)-9-(4′-phosphono-4′,4′-difluoro-2′,3′-methanobutyl)guanine and its enantiomer. Evaluation of the inhibitory activity for purine nucleoside phosphorylase. Tetrahedron 53:11297–11306

    Article  Google Scholar 

  86. Katagiri N, Morishita Y, Yamaguchi M (1998) Highly regio- and enantio-selective deacylation of carbocyclic 3′,5′-di-O-acyloxetanocins by lipases. Tetrahedron Lett 39:2613–2616

    Article  CAS  Google Scholar 

  87. Deardorff DR, Mattews AJ, McKeenin DS, Craney CL (1986) A highly enantioselective hydrolysis of cis-3,5-diacetoxycyclopent-1-ene: an enzymatic preparation of 3(R)-acetoxy-5(S)-hydroxycyclopent-1-ene. Tetrahedron Lett 27:1255–1256

    Article  CAS  Google Scholar 

  88. Deardorff DR, Shambayati S, Myles DC, Heerding D (1988) Studies on the synthesis of (-)-neplanocin A. Homochiral preparation of a key cyclopentanoid intermediate. J Org Chem 53:3614–3615

    Article  CAS  Google Scholar 

  89. Deardorff DR, Savin KA, Justman CJ, Karanjawala ZE, Sheppeck JEII, Hager DC, Aydin N (1996) Conversion of allylic alcohols into allylic nitromethyl compounds via a palladium-catalyzed solvolysis: an enantioselective synthesis of an advanced carbocyclic nucleoside precursor1. J Org Chem 61:3616–3622

    Article  CAS  Google Scholar 

  90. Herdewijn P, Balzarini J, De Clercq E, Vanderhaeghe H (1985) Resolution of aristeromycin enantiomers. J Chem Med 28:1385–1386

    Article  CAS  Google Scholar 

  91. Tenney DJ, Yamanaka G, Voss SW, Cianci CW, Tuomari AV, Sheaffer AK, Alamn M, Colonno RJ (1997) Lobucavir is phosphorylated in human cytomegalovirus-infected and -uninfected cells and inhibits the viral DNA polymerase. Antimicrob Agents Chemother 41:2680–2685

    CAS  Google Scholar 

  92. Barton DHR, Ramesh M (1990) Tandem nucleophilic and radical chemistry in the replacement of the hydroxyl group by a carbon-carbon bond. A concise synthesis of showdomycin. J Am Chem Soc 112:891–892

    Article  CAS  Google Scholar 

  93. Kitagawa M, Hasegawa S, Saito S, Shimada N, Takita T (1991) Synthesis and antiviral activity of oxetanocin derivatives. Tetrahedron Lett 32:3531–3534

    Article  CAS  Google Scholar 

  94. Honjo M, Maruyama T, Sato Y, Horii T (1989) Synthesis of the carbocyclic analogue of oxetanocin A. Chem Pharm Bull 37:1413–1415

    Article  CAS  Google Scholar 

  95. Bisacchi GS, Braitman A, Cianci CW, Clark JM, Field AK, Hagen ME, Hockstein DR, Malley MF, Mitt T, Slusarchyk WA, Sundeen JE, Terry BJ, Tuomari AV, Weaver ER, Young MG, Zahler R (1991) Synthesis and antiviral activity of enantiomeric forms of cyclobutyl nucleoside analogs. J Med Chem 34:1415–1421

    Article  CAS  Google Scholar 

  96. Ohnishi Y, Ichikawa Y (2002) Stereoselective synthesis of a C-glycoside analogue of N-Fmoc-serine β-N-acetylglucosaminide by Ramberg–Bäcklund rearrangement. Bioorg Med Chem Lett 12:997–999

    Article  CAS  Google Scholar 

  97. Russ P, Schelling P, Scapozza L, Folkers G, De Clercq E, Marquez VE (2003) Synthesis and biological evaluation of 5-substituted derivatives of the potent antiherpes agent (north)-methanocarbathymine. J Med Chem 46:5045–5054

    Article  CAS  Google Scholar 

  98. Ludek OR, Meier C (2003) Synthesis of carbocyclic analogues of thymidine. Nucleosides Nucleotides Nucleic Acids 22:683–685

    Article  CAS  Google Scholar 

  99. Zhang HC, Daves GD Jr (1993) Enantio- and diastereoisomers of 2,4-dimethoxy-5-(2,3-dideoxy-5-O-tritylribofuranosyl)pyrimidine. 2′,3′-dideoxy pyrimidine C-nucleosides by palladium-mediated glycal-aglycon coupling. J Org Chem 58:2557–2560

    Article  CAS  Google Scholar 

  100. Crimmins MT, Zuercher WJ (2000) Solid-phase synthesis of carbocyclic nucleosides. Org Lett 2:1065–1067

    Article  CAS  Google Scholar 

  101. Obara T, Shuto S, Saito Y, Snoeck R, Andrei G, Balzarini J, De Clercq E, Matsuda A (1996) New neplanocin analogues. 7. Synthesis and antiviral activity of 2-halo derivatives of neplanocin A. J Med Chem 39:3847–3892

    Article  CAS  Google Scholar 

  102. Saville-Stones EA, Lindell SD, Jennings NS, Head JC, Ford MJ (1991) Synthesis of (±)-2′,3′-didehydro-2′,3′-dideoxy nucleosides via a modified Prins reaction and palladium(0) catalysed coupling. J Chem Soc Perkin 1 2603–2604

    Google Scholar 

  103. Gundersen LL, Benneche T, Undheim K (1992) Pd(0)-catalyzed allylic alkylation in the synthesis of (±)carbovir. Tetrahedron Lett 33:1085–1088

    Article  CAS  Google Scholar 

  104. Jeong LS, Park JG, Choi WJ, Moon HR, Lee KM, Kim HO, Kim HD, Chun MW, Park HY, Kim K, Sheng YY (2003) Synthesis of halogenated 9-(dihydroxycyclopent-4′-enyl) adenines and their inhibitory activities against S-adenosylhomocysteine hydrolase. Nucleosides Nucleotides Nucleic Acids 22:919–921

    Article  CAS  Google Scholar 

  105. Foster RH, Faulds D (1998) Abacavir. Drugs 55:729–736

    Article  CAS  Google Scholar 

  106. Crimmins MT, King BW (1996) An efficient asymmetric approach to carbocyclic nucleosides: asymmetric synthesis of 1592U89, a potent inhibitor of HIV reverse transcriptase. J Org Chem 61:4192–4193

    Article  CAS  Google Scholar 

  107. Taylor SJC, Sutherland AG, Lee C, Wisdom R, Thomas S, Roberts SM, Evans C (1990) Chemoenzymatic synthesis of (–)-carbovir utilizing a whole cell catalysed resolution of 2-azabicyclo[2.2.1]hept-5-en-3-one. J Chem Soc Chem Commun 1120–1121

    Google Scholar 

  108. Lim MI, Marquez VE (1983) Total synthesis of (–)-neplanocin A. Tetrahedron Lett 24:5559–5562

    Article  CAS  Google Scholar 

  109. Marquez VE, Lim MI, Treanor SP, Plowman J, Priest MA, Markovac A, Khan MS, Kaskar B, Driscoll JS (1988) Cyclopentenylcytosine. A carbocyclic nucleoside with antitumor and antiviral properties. J Med Chem 31:1687–1694

    Article  CAS  Google Scholar 

  110. Shearly YF, O’Dell CA, Amett G (1987) Synthesis and antiviral evaluation of carbocyclic analogs of 2-amino-6-substituted-purine 3′-deoxyribofuranosides. J Med Chem 30:1090–1097

    Article  Google Scholar 

  111. Chun BK, Song GY, Chu CK (2001) Stereocontrolled syntheses of carbocyclic C-nucleosides and related compounds. J Org Chem 66:4852–4858

    Article  CAS  Google Scholar 

  112. Chu CK, Cutler S (1986) Chemistry and antiviral activities of acyclonucleosides. J Heterocycl Chem 23:289–319

    Article  CAS  Google Scholar 

  113. Schaeffer HJ, Beauchamp L, de Miranda P, de Elion G, Bauer DJ, Collins P (1978) 9-(2-Hydroxyethoxymethyl)guanine activity against viruses of the herpes group. Nature 272:583–585

    Article  CAS  Google Scholar 

  114. Barrio JR, Bryant JD, Keyser GE (1980) A direct method for the preparation of 2-hydroxyethoxymethyl derivatives of guanine, adenine, and cytosine. J Med Chem 23:572–574

    Article  CAS  Google Scholar 

  115. Keyser GE, Bryant JD, Barrio JR (1979) Iodomethylethers from 1,3-dioxolane and 1,3-oxathiolane: preparation of acyclic nucleoside analogs. Tetrahedron Lett 20:3263–3264

    Article  Google Scholar 

  116. Robins MJ, Hatfield PW (1982) Nucleic acid related compounds. 37. Convenient and high-yield syntheses of N-[(2-hydroxyethoxy)methyl] heterocycles as “acyclic nucleoside” analogues. Can J Chem 60:547–553

    Article  CAS  Google Scholar 

  117. Naesens L, De Clercq E (1997) Therapeutic potential of HPMPC (Cidofovir), PMEA (Adefovir) and related acyclic nucleoside phosphonate analogues as broad-spectrum antiviral agents. Nucleotides Nucleosides 16:983–992

    Article  CAS  Google Scholar 

  118. Dang Q, Liu Y, Erion MD (1998) A new regio-defined synthesis of PMEA. Nucleotides Nucleosides 17:1445–1451

    Article  CAS  Google Scholar 

  119. Field AK, Davies ME, de Witt C, Perry HC, Liou R, Germerhausen JL, Karkas JD, Ashton WT, Johnson DB, Tolman RL (1983) 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine: a selective inhibitor of herpes group virus replication. Proc Natl Acad Sci U S A 80:4139–4143

    Article  CAS  Google Scholar 

  120. Yokohama M (2000) Synthesis and biological activity of thionucleosides. Synthesis 2000:1637–1655

    Article  Google Scholar 

  121. Van Drannen NA, Freeman GA, Short SA, Harvey R, Jansen R, Szczech G, Koszalka GW (1996) Synthesis and antiviral activity of 2′-deoxy-4′-thio purine nucleosides. J Med Chem 39:538–542

    Article  Google Scholar 

  122. Dyson MR, Coe PL, Walker RT (1991) The synthesis and antiviral activity of some 4′-thio-2′-deoxy nucleoside analogs. J Med Chem 34:2782–2786

    Article  CAS  Google Scholar 

  123. Reist EJ, Gueffroy DE, Goodman L (1964) Synthesis of 4-Thio-D- and -L-ribofuranose and the corresponding adenine nucleosides. J Am Chem Soc 86:5658–5663

    Article  CAS  Google Scholar 

  124. Reist EJ, Fischer LV, Goodman L (1968) Thio sugars. Synthesis of the adenine nucleosides of 4-thio-D-xylose and 4-thio-D-arabinose. J Org Chem 33:189–192

    Article  CAS  Google Scholar 

  125. Ritchie RGS, Vyals DM, Szarek WA (1978) Addition of pseudohalogens to unsaturated carbohydrates. VI. Synthesis of 4′ -thiocordycepin. Can J Chem 56:794–802

    Article  CAS  Google Scholar 

  126. Haraguchi K, Nishikawa A, Sasakura E, Tanaka H, Nakamura K, Miyasaka T (1998) Electrophilic addition to 4-thio furanoid glycal: a highly stereoselective entry to 2′-deoxy-4′-thio pyrimidine nucleosides. Tetrahedron Lett 39:3713–3716

    Article  CAS  Google Scholar 

  127. Naka T, Nishizono N, Minakawa N, Matsuda A (1999) Nucleosides and nucleotides. 189. Investigation of the stereoselective coupling of thymine with meso-thiolane-3,4-diol-1-oxide derivatives via the Pummerer reaction. Tetrahedron Lett 40:6297–6300

    Article  CAS  Google Scholar 

  128. Nishikono N, Koike N, Yamagata Y, Fujii S, Matsuda A (1996) Nucleosides and nucleotides. 159. Synthesis of thietane nucleosides via the Pummerer reaction as a key step. Tetrahedron Lett 37:7569–7572

    Article  Google Scholar 

  129. Bobek M, Whistler RL, Bloch A (1970) Preparation and activity of the 4′-thio-derivatives of some 6-substituted purines nucleosides. J Med Chem 13:411–413

    Article  CAS  Google Scholar 

  130. George R, Ritchie S, Szarek WA (1973) Synthesis of 4′-thiocordycepin synthesis of 4′-thiocordycepin. J Chem Soc Chem Commun 686–687

    Google Scholar 

  131. Bobek M, Bloch A, Parthasarathy R, Whistler RL (1975) Synthesis and biological activity of 5-fluoro-4′-thiouridine and some related nucleosides. J Med Chem 18:784–787

    Article  CAS  Google Scholar 

  132. Secrist JA III, Tiwari KM, Riordan JM, Montgomery JA (1991) Synthesis and biological activity of 2′-deoxy-4′-thio pyrimidine nucleosides. J Med Chem 34:2361–2366

    Article  CAS  Google Scholar 

  133. Niedballa U, Vorbrueggen H (1974) Synthesis of nucleosides. 9. General synthesis of N-glycosides. I. Synthesis of pyrimidine nucleosides. J Org Chem 39:3654–3660

    Article  CAS  Google Scholar 

  134. Jones MF, Noble SA, Robertson CA, Storer R (1991) Tetrahydrothiophene nucleosides as potential anti-HIV agents. Tetrahedron Lett 32:247–250

    Article  CAS  Google Scholar 

  135. Beach JW, Jeong LS, Alves AJ, Pohl D, Kim HO, Chang CN, Doong SL, Schinazi RF, Cheng YC, Chu CK (1992) Synthesis of enantiomerically pure (2′R,5′S)-(-)-1-(2-hydroxymethyloxathiolan-5-yl)cytosine as a potent antiviral agent against hepatitis B virus (HBV) and human immunodeficiency virus (HIV). J Org Chem 57:2217–2219

    Article  CAS  Google Scholar 

  136. Li JJ, Gribble GW (2000) Palladium in heterocyclic chemistry. Pergamon Press, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brito-Arias, M. (2016). Nucleoside Mimetics. In: Synthesis and Characterization of Glycosides. Springer, Cham. https://doi.org/10.1007/978-3-319-32310-7_4

Download citation

Publish with us

Policies and ethics